Acute Myeloid Leukemias with Normal Cytogenetics

  • Sergej Konoplev
  • Carlos Bueso-Ramos
Part of the Molecular Pathology Library book series (MPLB, volume 4)


In this chapter, we discuss acute myeloid leukemia with normal cytogenetics (CN AML). In 40–50% of patients with AML, no chromosomal abnormalities are detected by conventional karyotyping, suggesting that other mechanisms are responsible for leukemogenesis in these cases. Attempts to stratify such cases on the basis of complementary DNA microarrays demonstrated gene expression patterns with differences in responses to treatment; however, no specific genetic subgroups have emerged from these studies. Abnormalities detected in patients with AML with a normal karyotype could be arbitrarily divided into two major groups Abnormalities directly affecting proliferation/apoptosis of leukemia cells, and Abnormalities affecting proliferation/apoptosis of leukemia cells through interaction with bone marrow stroma.


Migration Codon Leukemia Serine Sarcoma 


  1. 1.
    Falini B, Mecucci C, Tiacci E, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005;352(3):254–266.PubMedCrossRefGoogle Scholar
  2. 2.
    Bullinger L, Dohner K, Bair E, et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med. 2004;350(16):1605–1616.PubMedCrossRefGoogle Scholar
  3. 3.
    Valk PJ, Verhaak RG, Beijen MA, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med. 2004;350(16):1617–1628.PubMedCrossRefGoogle Scholar
  4. 4.
    Lyman SD, James L, Zappone J, Sleath PR, Beckmann MP, Bird T. Characterization of the protein encoded by the flt3 (flk2) receptor-like tyrosine kinase gene. Oncogene. 1993;8(4):815–822.PubMedGoogle Scholar
  5. 5.
    Abu-Duhier FM, Goodeve AC, Wilson GA, Care RS, Peake IR, Reilly JT. Genomic structure of human FLT3: implications for mutational analysis. Br J Haematol. 2001;113(4):1076–1077.PubMedCrossRefGoogle Scholar
  6. 6.
    Lyman SD. Biology of flt3 ligand and receptor. Int J Hematol. 1995;62(2):63–73.PubMedCrossRefGoogle Scholar
  7. 7.
    Rosnet O, Buhring HJ, deLapeyriere O, et al. Expression and signal transduction of the FLT3 tyrosine kinase receptor. Acta Haematol. 1996;95(3–4):218–223.PubMedCrossRefGoogle Scholar
  8. 8.
    Hannum C, Culpepper J, Campbell D, et al. Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs. Nature. 1994;368(6472):643–648.PubMedCrossRefGoogle Scholar
  9. 9.
    McKenna HJ, Smith FO, Brasel K, et al. Effects of flt3 ligand on acute myeloid and lymphocytic leukemic blast cells from children. Exp Hematol. 1996;24(2):378–385.PubMedGoogle Scholar
  10. 10.
    Rusten LS, Lyman SD, Veiby OP, Jacobsen SE. The FLT3 ligand is a direct and potent stimulator of the growth of primitive and committed human CD34+ bone marrow progenitor cells in vitro. Blood. 1996;87(4):1317–1325.PubMedGoogle Scholar
  11. 11.
    Lyman SD, Jacobsen SE. c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood. 1998;91(4):1101–1134.PubMedGoogle Scholar
  12. 12.
    Drexler HG. Expression of FLT3 receptor and response to FLT3 ligand by leukemic cells. Leukemia. 1996;10(4):588–599.PubMedGoogle Scholar
  13. 13.
    Drexler HG, Meyer C, Quentmeier H. Effects of FLT3 ligand on proliferation and survival of myeloid leukemia cells. Leuk Lymphoma. 1999;33(1–2):83–91.PubMedGoogle Scholar
  14. 14.
    Rosnet O, Buhring HJ, Marchetto S, et al. Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells. Leukemia. 1996;10(2):238–248.PubMedGoogle Scholar
  15. 15.
    Nakao M, Yokota S, Iwai T, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia. 1996;10(12):1911–1918.PubMedGoogle Scholar
  16. 16.
    Yamamoto Y, Kiyoi H, Nakano Y, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood. 2001;97(8):2434–2439.PubMedCrossRefGoogle Scholar
  17. 17.
    Abu-Duhier FM, Goodeve AC, Wilson GA, Care RS, Peake IR, Reilly JT. Identification of novel FLT-3 Asp835 mutations in adult acute myeloid leukaemia. Br J Haematol. 2001;113(4):983–988.PubMedCrossRefGoogle Scholar
  18. 18.
    Stirewalt DL, Kopecky KJ, Meshinchi S, et al. FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood. 2001;97(11):3589–3595.PubMedCrossRefGoogle Scholar
  19. 19.
    Thiede C, Steudel C, Mohr B, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002;99(12):4326–4335.PubMedCrossRefGoogle Scholar
  20. 20.
    Spiekermann K, Bagrintseva K, Schoch C, Haferlach T, Hiddemann W, Schnittger S. A new and recurrent activating length mutation in exon 20 of the FLT3 gene in acute myeloid leukemia. Blood. 2002;100(9):3423–3425.PubMedCrossRefGoogle Scholar
  21. 21.
    Kindler T, Breitenbuecher F, Kasper S, et al. Identification of a novel activating mutation (Y842C) within the activation loop of FLT3 in patients with acute myeloid leukemia (AML). Blood. 2005;105(1):335–340.PubMedCrossRefGoogle Scholar
  22. 22.
    Taketani T, Taki T, Sugita K, et al. FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy. Blood. 2004;103(3):1085–1088.PubMedCrossRefGoogle Scholar
  23. 23.
    Kiyoi H, Naoe T. FLT3 in human hematologic malignancies. Leuk Lymphoma. 2002;43(8):1541–1547.PubMedCrossRefGoogle Scholar
  24. 24.
    Stirewalt DL, Radich JP. The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer. 2003;3(9):650–665.PubMedCrossRefGoogle Scholar
  25. 25.
    Levis M, Small D. FLT3: ITDoes matter in leukemia. Leukemia. 2003;17(9):1738–1752.PubMedCrossRefGoogle Scholar
  26. 26.
    Kottaridis PD, Gale RE, Linch DC. Flt3 mutations and leukaemia. Br J Haematol. 2003;122(4):523–538.PubMedCrossRefGoogle Scholar
  27. 27.
    Naoe T, Kiyoi H. Normal and oncogenic FLT3. Cell Mol Life Sci. 2004;61(23):2932–2938.PubMedCrossRefGoogle Scholar
  28. 28.
    Kiyoi H, Yanada M, Ozekia K. Clinical significance of FLT3 in leukemia. Int J Hematol. 2005;82(2):85–92.PubMedCrossRefGoogle Scholar
  29. 29.
    Ozeki K, Kiyoi H, Hirose Y, et al. Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia. Blood. 2004;103(5):1901–1908.PubMedCrossRefGoogle Scholar
  30. 30.
    Chen W, Jones D, Medeiros LJ, Luthra R, Lin P. Acute myeloid leukaemia with FLT3 gene mutations of both internal tandem duplication and point mutation type. Br J Haematol. 2005;130(5):726–728.PubMedCrossRefGoogle Scholar
  31. 31.
    Kiyoi H, Towatari M, Yokota S, et al. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia. 1998;12(9):1333–1337.PubMedCrossRefGoogle Scholar
  32. 32.
    Kiyoi H, Ohno R, Ueda R, Saito H, Naoe T. Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene. 2002;21(16):2555–2563.PubMedCrossRefGoogle Scholar
  33. 33.
    Zhao M, Kiyoi H, Yamamoto Y, et al. In vivo treatment of mutant FLT3-transformed murine leukemia with a tyrosine kinase inhibitor. Leukemia. 2000;14(3):374–378.PubMedCrossRefGoogle Scholar
  34. 34.
    Hayakawa F, Towatari M, Kiyoi H, et al. Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene. 2000;19(5):624–631.PubMedCrossRefGoogle Scholar
  35. 35.
    Minami Y, Yamamoto K, Kiyoi H, Ueda R, Saito H, Naoe T. Different antiapoptotic pathways between wild-type and mutated FLT3: insights into therapeutic targets in leukemia. Blood. 2003;102(8):2969–2975.PubMedCrossRefGoogle Scholar
  36. 36.
    Mizuki M, Schwable J, Steur C, et al. Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood. 2003;101(8):3164–3173.PubMedCrossRefGoogle Scholar
  37. 37.
    Zheng R, Friedman AD, Levis M, Li L, Weir EG, Small D. Internal tandem duplication mutation of FLT3 blocks myeloid differentiation through suppression of C/EBPalpha expression. Blood. 2004;103(5):1883–1890.PubMedCrossRefGoogle Scholar
  38. 38.
    Horiike S, Yokota S, Nakao M, et al. Tandem duplications of the FLT3 receptor gene are associated with leukemic transformation of myelodysplasia. Leukemia. 1997;11(9):1442–1446.PubMedCrossRefGoogle Scholar
  39. 39.
    Rombouts WJ, Blokland I, Lowenberg B, Ploemacher RE. Biological characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplications in the Flt3 gene. Leukemia. 2000;14(4):675–683.PubMedCrossRefGoogle Scholar
  40. 40.
    Kottaridis PD, Gale RE, Frew ME, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001;98(6):1752–1759.PubMedCrossRefGoogle Scholar
  41. 41.
    Frohling S, Schlenk RF, Breitruck J, et al. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood. 2002;100(13):4372–4380.PubMedCrossRefGoogle Scholar
  42. 42.
    Meshinchi S, Woods WG, Stirewalt DL, et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood. 2001;97(1):89–94.PubMedCrossRefGoogle Scholar
  43. 43.
    Liang DC, Shih LY, Hung IJ, et al. Clinical relevance of internal tandem duplication of the FLT3 gene in childhood acute myeloid leukemia. Cancer. 2002;94(12):3292–3298.PubMedCrossRefGoogle Scholar
  44. 44.
    Zwaan CM, Meshinchi S, Radich JP, et al. FLT3 internal tandem duplication in 234 children with acute myeloid leukemia: prognostic significance and relation to cellular drug resistance. Blood. 2003;102(7):2387–2394.PubMedCrossRefGoogle Scholar
  45. 45.
    Arrigoni P, Beretta C, Silvestri D, et al. FLT3 internal tandem duplication in childhood acute myeloid leukaemia: association with hyperleucocytosis in acute promyelocytic leukaemia. Br J Haematol. 2003;120(1):89–92.PubMedCrossRefGoogle Scholar
  46. 46.
    Xu F, Taki T, Eguchi M, et al. Tandem duplication of the FLT3 gene is infrequent in infant acute leukemia. Japan Infant Leukemia Study Group. Leukemia. 2000;14(5):945–947Google Scholar
  47. 47.
    Thiede C, Koch S, Creutzig E, et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood. 2006;107(10):4011–4020.PubMedCrossRefGoogle Scholar
  48. 48.
    Dohner K, Schlenk RF, Habdank M, et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood. 2005;106(12):3740–3746.PubMedCrossRefGoogle Scholar
  49. 49.
    Boissel N, Renneville A, Biggio V, et al. Prevalence, clinical profile, and prognosis of NPM mutations in AML with normal karyotype. Blood. 2005;106(10):3618–3620.PubMedCrossRefGoogle Scholar
  50. 50.
    Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG. FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood. 2002;99(1):310–318.PubMedCrossRefGoogle Scholar
  51. 51.
    Kelly LM, Kutok JL, Williams IR, et al. PML/RARalpha and FLT3-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci USA. 2002;99(12):8283–8288.PubMedCrossRefGoogle Scholar
  52. 52.
    Bos JL, Toksoz D, Marshall CJ, et al. Amino-acid substitutions at codon 13 of the N-ras oncogene in human acute myeloid leukaemia. Nature. 1985;315(6022):726–730.PubMedCrossRefGoogle Scholar
  53. 53.
    Needleman SW, Kraus MH, Srivastava SK, Levine PH, Aaronson SA. High frequency of N-ras activation in acute myelogenous leukemia. Blood. 1986;67(3):753–757.PubMedGoogle Scholar
  54. 54.
    Janssen JW, Steenvoorden AC, Lyons J, et al. RAS gene mutations in acute and chronic myelocytic leukemias, chronic myeloproliferative disorders, and myelodysplastic syndromes. Proc Natl Acad Sci USA. 1987;84(24):9228–9232.PubMedCrossRefGoogle Scholar
  55. 55.
    Farr CJ, Saiki RK, Erlich HA, McCormick F, Marshall CJ. Analysis of RAS gene mutations in acute myeloid leukemia by polymerase chain reaction and oligonucleotide probes. Proc Natl Acad Sci USA. 1988;85(5):1629–1633.PubMedCrossRefGoogle Scholar
  56. 56.
    Ahuja HG, Foti A, Bar-Eli M, Cline MJ. The pattern of mutational involvement of RAS genes in human hematologic malignancies determined by DNA amplification and direct sequencing. Blood. 1990;75(8):1684–1690.PubMedGoogle Scholar
  57. 57.
    Vogelstein B, Civin CI, Preisinger AC, et al. RAS gene mutations in childhood acute myeloid leukemia: a Pediatric Oncology Group study. Genes Chromosomes Cancer. 1990;2(2):159–162.PubMedCrossRefGoogle Scholar
  58. 58.
    Neubauer A, Dodge RK, George SL, et al. Prognostic importance of mutations in the ras proto-oncogenes in de novo acute myeloid leukemia. Blood. 1994;83(6):1603–1611.PubMedGoogle Scholar
  59. 59.
    Meshinchi S, Stirewalt DL, Alonzo TA, et al. Activating mutations of RTK/ras signal transduction pathway in pediatric acute myeloid leukemia. Blood. 2003;102(4):1474–1479.PubMedCrossRefGoogle Scholar
  60. 60.
    Coghlan DW, Morley AA, Matthews JP, Bishop JF. The incidence and prognostic significance of mutations in codon 13 of the N-ras gene in acute myeloid leukemia. Leukemia. 1994;8(10):1682–1687.PubMedGoogle Scholar
  61. 61.
    Paquette RL, Landaw EM, Pierre RV, et al. N-ras mutations are associated with poor prognosis and increased risk of leukemia in myelodysplastic syndrome. Blood. 1993;82(2):590–599.PubMedGoogle Scholar
  62. 62.
    Nakano Y, Kiyoi H, Miyawaki S, et al. Molecular evolution of acute myeloid leukaemia in relapse: unstable N-ras and FLT3 genes compared with p53 gene. Br J Haematol. 1999;104(4):659–664.PubMedCrossRefGoogle Scholar
  63. 63.
    Matsumura I, Kawasaki A, Tanaka H, et al. Biologic significance of GATA-1 activities in Ras-mediated megakaryocytic differentiation of hematopoietic cell lines. Blood. 2000;96(7):2440–2450.PubMedGoogle Scholar
  64. 64.
    Matsumura I, Nakajima K, Wakao H, et al. Involvement of prolonged ras activation in thrombopoietin-induced megakaryocytic differentiation of a human factor-dependent hematopoietic cell line. Mol Cell Biol. 1998;18(7):4282–4290.PubMedGoogle Scholar
  65. 65.
    Chan PM, Ilangumaran S, La Rose J, Chakrabartty A, Rottapel R. Autoinhibition of the kit receptor tyrosine kinase by the cytosolic juxtamembrane region. Mol Cell Biol. 2003;23(9):3067–3078.PubMedCrossRefGoogle Scholar
  66. 66.
    Nagata H, Worobec AS, Oh CK, et al. Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc Natl Acad Sci USA. 1995;92(23):10560–10564.PubMedCrossRefGoogle Scholar
  67. 67.
    Ferrao P, Gonda TJ, Ashman LK. Expression of constitutively activated human c-Kit in Myb transformed early myeloid cells leads to factor independence, histiocytic differentiation, and tumorigenicity. Blood. 1997;90(11):4539–4552.PubMedGoogle Scholar
  68. 68.
    Beghini A, Peterlongo P, Ripamonti CB, et al. C-kit mutations in core binding factor leukemias. Blood. 2000;95(2):726–727.PubMedGoogle Scholar
  69. 69.
    Care RS, Valk PJ, Goodeve AC, et al. Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. Br J Haematol. 2003;121(5):775–777.PubMedCrossRefGoogle Scholar
  70. 70.
    Deshpande RV, Lalezari P, Pergolizzi RG, Moore MA. Structural abnormalities in the G-CSF receptor in severe congenital neutropenia. J Hematother Stem Cell Res. 1999;8(4):411–420.PubMedCrossRefGoogle Scholar
  71. 71.
    Dong F, Brynes RK, Tidow N, Welte K, Lowenberg B, Touw IP. Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N Engl J Med. 1995;333(8):487–493.PubMedCrossRefGoogle Scholar
  72. 72.
    Freedman MH, Alter BP. Risk of myelodysplastic syndrome and acute myeloid leukemia in congenital neutropenias. Semin Hematol. 2002;39(2):128–133.PubMedCrossRefGoogle Scholar
  73. 73.
    Ward AC, van Aesch YM, Schelen AM, Touw IP. Defective internalization and sustained activation of truncated granulocyte colony-stimulating factor receptor found in severe congenital neutropenia/acute myeloid leukemia. Blood. 1999;93(2):447–458.PubMedGoogle Scholar
  74. 74.
    Hermans MH, Ward AC, Antonissen C, Karis A, Lowenberg B, Touw IP. Perturbed granulopoiesis in mice with a targeted mutation in the granulocyte colony-stimulating factor receptor gene associated with severe chronic neutropenia. Blood. 1998;92(1):32–39.PubMedGoogle Scholar
  75. 75.
    Mitsui T, Watanabe S, Taniguchi Y, et al. Impaired neutrophil maturation in truncated murine G-CSF receptor-transgenic mice. Blood. 2003;101(8):2990–2995.PubMedCrossRefGoogle Scholar
  76. 76.
    Aarts LH, Roovers O, Ward AC, Touw IP. Receptor activation and 2 distinct COOH-terminal motifs control G-CSF receptor distribution and internalization kinetics. Blood. 2004;103(2):571–579.PubMedCrossRefGoogle Scholar
  77. 77.
    Hermans MH, Antonissen C, Ward AC, Mayen AE, Ploemacher RE, Touw IP. Sustained receptor activation and hyperproliferation in response to granulocyte colony-stimulating factor (G-CSF) in mice with a severe congenital neutropenia/acute myeloid leukemia-derived mutation in the G-CSF receptor gene. J Exp Med. 1999;189(4):683–692.PubMedCrossRefGoogle Scholar
  78. 78.
    van de Geijn GJ, Gits J, Aarts LH, Heijmans-Antonissen C, Touw IP. G-CSF receptor truncations found in SCN/AML relieve SOCS3-controlled inhibition of STAT5 but leave suppression of STAT3 intact. Blood. 2004;104(3):667–674.PubMedCrossRefGoogle Scholar
  79. 79.
    Falini B, Nicoletti I, Bolli N, et al. Translocations and mutations involving the nucleophosmin (NPM1) gene in lymphomas and leukemias. Haematologica. 2007;92(4):519–532.PubMedCrossRefGoogle Scholar
  80. 80.
    Chen W, Rassidakis GZ, Medeiros LJ. Nucleophosmin gene mutations in acute myeloid leukemia. Arch Pathol Lab Med. 2006;130(11):1687–1692.PubMedGoogle Scholar
  81. 81.
    Oki Y, Jelinek J, Beran M, Verstovsek S, Kantarjian HM, Issa JP. Mutations and promoter methylation status of NPM1 in myeloproliferative disorders. Haematologica. 2006;91(8):1147–1148.PubMedGoogle Scholar
  82. 82.
    Grisendi S, Mecucci C, Falini B, Pandolfi PP. Nucleophosmin and cancer. Nat Rev Cancer. 2006;6(7):493–505.PubMedCrossRefGoogle Scholar
  83. 83.
    Chen W, Rassidakis GZ, Li J, et al. High frequency of NPM1 gene mutations in acute myeloid leukemia with prominent nuclear invaginations (“cuplike” nuclei). Blood. 2006;108(5):1783–1784.PubMedCrossRefGoogle Scholar
  84. 84.
    Zhang Y, Zhang M, Yang L, Xiao Z. NPM1 mutations in myelodysplastic syndromes and acute myeloid leukemia with normal karyotype. Leuk Res. 2007;31(1):109–111.PubMedCrossRefGoogle Scholar
  85. 85.
    Schnittger S, Schoch C, Kern W, et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood. 2005;106(12):3733–3739.PubMedCrossRefGoogle Scholar
  86. 86.
    Chou WC, Tang JL, Lin LI, et al. Nucleophosmin mutations in de novo acute myeloid leukemia: the age-dependent incidences and the stability during disease evolution. Cancer Res. 2006;66(6):3310–3316.PubMedCrossRefGoogle Scholar
  87. 87.
    Verhaak RG, Goudswaard CS, van Putten W, et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood. 2005;106(12):3747–3754.PubMedCrossRefGoogle Scholar
  88. 88.
    Mariano AR, Colombo E, Luzi L, et al. Cytoplasmic localization of NPM in myeloid leukemias is dictated by gain-of-function mutations that create a functional nuclear export signal. Oncogene. 2006;25(31):4376–4380.PubMedCrossRefGoogle Scholar
  89. 89.
    Albiero E, Madeo D, Giaretta I, Borghero C, Visco C, Rodeghiero F. A novel mutation in the exon 11 of nucleophosmin (NPM1) gene leads to a truncated form of the protein lacking the C-terminal NES-motif [abstract]. Haematologica. 2006:237Google Scholar
  90. 90.
    Pasqualucci L, Liso A, Martelli MP, et al. Mutated nucleophosmin detects clonal multilineage involvement in acute myeloid leukemia: impact on WHO classification. Blood. 2006;108(13):4146–4155.PubMedCrossRefGoogle Scholar
  91. 91.
    Fenaux P, Preudhomme C, Quiquandon I, et al. Mutations of the P53 gene in acute myeloid leukaemia. Br J Haematol. 1992;80(2):178–183.PubMedGoogle Scholar
  92. 92.
    Fenaux P, Jonveaux P, Quiquandon I, et al. P53 gene mutations in acute myeloid leukemia with 17p monosomy. Blood. 1991;78(7):1652–1657.PubMedGoogle Scholar
  93. 93.
    Xu F, Taki T, Yang HW, et al. Tandem duplication of the FLT3 gene is found in acute lymphoblastic leukaemia as well as acute myeloid leukaemia but not in myelodysplastic syndrome or juvenile chronic myelogenous leukaemia in children. Br J Haematol. 1999;105(1):155–162.PubMedCrossRefGoogle Scholar
  94. 94.
    Noguera NI, Ammatuna E, Zangrilli D, et al. Simultaneous detection of NPM1 and FLT3-ITD mutations by capillary electrophoresis in acute myeloid leukemia. Leukemia. 2005;19(8):1479–1482.PubMedCrossRefGoogle Scholar
  95. 95.
    Falini B, Nicoletti I, Martelli MF, Mecucci C. Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features. Blood. 2007;109(3):874–885.PubMedCrossRefGoogle Scholar
  96. 96.
    Roti G, Rosati R, Bonasso R, et al. Denaturing high-performance liquid chromatography: a valid approach for identifying NPM1 mutations in acute myeloid leukemia. J Mol Diagn. 2006;8(2):254–259.PubMedCrossRefGoogle Scholar
  97. 97.
    Scholl S, Mugge LO, Landt O, et al. Rapid screening and sensitive detection of NPM1 (nucleophosmin) exon 12 mutations in acute myeloid leukaemia. Leuk Res. 2007;31(9):1205–1211.PubMedCrossRefGoogle Scholar
  98. 98.
    Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med. 1996;184(3):1101–1109.PubMedCrossRefGoogle Scholar
  99. 99.
    Chen CY, Tsay W, Tang JL, et al. SOCS1 methylation in patients with newly diagnosed acute myeloid leukemia. Genes Chromosomes Cancer. 2003;37(3):300–305.PubMedCrossRefGoogle Scholar
  100. 100.
    Tabe Y, Konopleva M, Munsell MF, et al. PML-RARalpha is associated with leptin-receptor induction: the role of mesenchymal stem cell-derived adipocytes in APL cell survival. Blood. 2004;103(5):1815–1822.PubMedCrossRefGoogle Scholar
  101. 101.
    Crazzolara R, Kreczy A, Mann G, et al. High expression of the chemokine receptor CXCR4 predicts extramedullary organ infiltration in childhood acute lymphoblastic leukaemia. Br J Haematol. 2001;115(3):545–553.PubMedCrossRefGoogle Scholar
  102. 102.
    Rombouts EJ, Pavic B, Lowenberg B, Ploemacher RE. Relation between CXCR-4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood. 2004;104(2):550–557.PubMedCrossRefGoogle Scholar
  103. 103.
    Spoo AC, Lubbert M, Wierda WG, Burger JA. CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood. 2007;109(2):786–791.PubMedCrossRefGoogle Scholar
  104. 104.
    Konoplev S, Rassidakis GZ, Estey E, et al. Overexpression of CXCR4 predicts adverse overall and event-free survival in patients with unmutated FLT3 acute myeloid leukemia with normal karyotype. Cancer. 2007;109(6):1152–1156.PubMedCrossRefGoogle Scholar
  105. 105.
    Kitagawa M, Yoshida S, Kuwata T, Tanizawa T, Kamiyama R. p53 expression in myeloid cells of myelodysplastic syndromes. Association with evolution of overt leukemia. Am J Pathol. 1994;145(2):338–344.PubMedGoogle Scholar
  106. 106.
    Cheng GY, Minden MD, Toyonaga B, Mak TW, McCulloch EA. T cell receptor and immunoglobulin gene rearrangements in acute myeloblastic leukemia. J Exp Med. 1986;163(2):414–424.PubMedCrossRefGoogle Scholar
  107. 107.
    Norton JD, Campana D, Hoffbrand AV, et al. Rearrangement of immunoglobulin and T cell antigen receptor genes in acute myeloid leukemia with lymphoid-associated markers. Leukemia. 1987;1(11):757–761.PubMedGoogle Scholar
  108. 108.
    Kyoda K, Nakamura S, Matano S, Ohtake S, Matsuda T. Prognostic significance of immunoglobulin heavy chain gene rearrangement in patients with acute myelogenous leukemia. Leukemia. 1997;11(6):803–806.PubMedCrossRefGoogle Scholar
  109. 109.
    Tanner SM, Austin JL, Leone G, et al. BAALC, the human member of a novel mammalian neuroectoderm gene lineage, is implicated in hematopoiesis and acute leukemia. Proc Natl Acad Sci USA. 2001;98(24):13901–13906.PubMedCrossRefGoogle Scholar
  110. 110.
    Bienz M, Ludwig M, Leibundgut EO, et al. Risk assessment in patients with acute myeloid leukemia and a normal karyotype. Clin Cancer Res. 2005;11(4):1416–1424.PubMedCrossRefGoogle Scholar
  111. 111.
    Baldus CD, Tanner SM, Ruppert AS, et al. BAALC expression predicts clinical outcome of de novo acute myeloid leukemia patients with normal cytogenetics: a Cancer and Leukemia Group B Study. Blood. 2003;102(5):1613–1618.PubMedCrossRefGoogle Scholar
  112. 112.
    Baldus CD, Thiede C, Soucek S, Bloomfield CD, Thiel E, Ehninger G. BAALC expression and FLT3 internal tandem duplication mutations in acute myeloid leukemia patients with normal cytogenetics: prognostic implications. J Clin Oncol. 2006;24(5):790–797.PubMedCrossRefGoogle Scholar
  113. 113.
    Pabst T, Mueller BU, Zhang P, et al. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet. 2001;27(3):263–270.PubMedCrossRefGoogle Scholar
  114. 114.
    Frohling S, Schlenk RF, Stolze I, et al. CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol. 2004;22(4):624–633.PubMedCrossRefGoogle Scholar
  115. 115.
    Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, Meijer J, et al. Biallelic mutations in the CEBPA gene and low CEBPA expression levels as prognostic markers in intermediate-risk AML. Hematol J. 2003;4(1):31–40Google Scholar
  116. 116.
    Preudhomme C, Sagot C, Boissel N, et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood. 2002;100(8):2717–2723.PubMedCrossRefGoogle Scholar
  117. 117.
    Baldus CD, Liyanarachchi S, Mrozek K, et al. Acute myeloid leukemia with complex karyotypes and abnormal chromosome 21: amplification discloses overexpression of APP, ETS2, and ERG genes. Proc Natl Acad Sci USA. 2004;101(11):3915–3920.PubMedCrossRefGoogle Scholar
  118. 118.
    Oikawa T, Yamada T. Molecular biology of the Ets family of transcription factors. Gene. 2003;303:11–34.PubMedCrossRefGoogle Scholar
  119. 119.
    Oikawa T. ETS transcription factors: possible targets for cancer therapy. Cancer Sci. 2004;95(8):626–633.PubMedCrossRefGoogle Scholar
  120. 120.
    Mrozek K, Heinonen K, Theil KS, Bloomfield CD. Spectral karyotyping in patients with acute myeloid leukemia and a complex karyotype shows hidden aberrations, including recurrent overrepresentation of 21q, 11q, and 22q. Genes Chromosomes Cancer. 2002;34(2):137–153.PubMedCrossRefGoogle Scholar
  121. 121.
    Ichikawa H, Shimizu K, Hayashi Y, Ohki M. An RNA-binding protein gene, TLS/FUS, is fused to ERG in human myeloid leukemia with t(16;21) chromosomal translocation. Cancer Res. 1994;54(11):2865–2868.PubMedGoogle Scholar
  122. 122.
    Marcucci G, Baldus CD, Ruppert AS, et al. Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: a Cancer and Leukemia Group B study. J Clin Oncol. 2005;23(36):9234–9242.PubMedCrossRefGoogle Scholar
  123. 123.
    Lekanne Deprez RH, Riegman PH, Groen NA, et al. Cloning and characterization of MN1, a gene from chromosome 22q11, which is disrupted by a balanced translocation in a meningioma. Oncogene. 1995;10(8):1521–1528Google Scholar
  124. 124.
    Buijs A, Sherr S, van Baal S, et al. Translocation (12;22) (p13;q11) in myeloproliferative disorders results in fusion of the ETS-like TEL gene on 12p13 to the MN1 gene on 22q11. Oncogene. 1995;10(8):1511–1519.PubMedGoogle Scholar
  125. 125.
    Heuser M, Wingen LU, Steinemann D, et al. Gene-expression profiles and their association with drug resistance in adult acute myeloid leukemia. Haematologica. 2005;90(11):1484–1492.PubMedGoogle Scholar
  126. 126.
    Heuser M, Beutel G, Krauter J, et al. High meningioma 1 (MN1) expression as a predictor for poor outcome in acute myeloid leukemia with normal cytogenetics. Blood. 2006;108(12):3898–3905.PubMedCrossRefGoogle Scholar
  127. 127.
    Damiani D, Tiribelli M, Calistri E, et al. The prognostic value of P-glycoprotein (ABCB) and breast cancer resistance protein (ABCG2) in adults with de novo acute myeloid leukemia with normal karyotype. Haematologica. 2006;91(6):825–828.PubMedGoogle Scholar
  128. 128.
    Wilson CS, Davidson GS, Martin SB, et al. Gene expression profiling of adult acute myeloid leukemia identifies novel biologic clusters for risk classification and outcome prediction. Blood. 2006;108(2):685–696.PubMedCrossRefGoogle Scholar
  129. 129.
    Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, van Putten WL, et al. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood. 2003;101(3):837–845Google Scholar
  130. 130.
    Barragan E, Cervera J, Bolufer P, et al. Prognostic implications of Wilms’ tumor gene (WT1) expression in patients with de novo acute myeloid leukemia. Haematologica. 2004;89(8):926–933.PubMedGoogle Scholar
  131. 131.
    Schmid D, Heinze G, Linnerth B, et al. Prognostic significance of WT1 gene expression at diagnosis in adult de novo acute myeloid leukemia. Leukemia. 1997;11(5):639–643.PubMedCrossRefGoogle Scholar
  132. 132.
    Bacher U, Haferlach T, Schoch C, Kern W, Schnittger S. Implications of NRAS mutations in AML: a study of 2502 patients. Blood. 2006;107(10):3847–3853.PubMedCrossRefGoogle Scholar
  133. 133.
    Ropero S, Setien F, Espada J, et al. Epigenetic loss of the familial tumor-suppressor gene exostosin-1 (EXT1) disrupts heparan sulfate synthesis in cancer cells. Hum Mol Genet. 2004;13(22):2753–2765.PubMedCrossRefGoogle Scholar
  134. 134.
    Li Q, Kopecky KJ, Mohan A, et al. Estrogen receptor methylation is associated with improved survival in adult acute myeloid leukemia. Clin Cancer Res. 1999;5(5):1077–1084.PubMedGoogle Scholar
  135. 135.
    Christiansen DH, Andersen MK, Pedersen-Bjergaard J. Methylation of p15INK4B is common, is associated with deletion of genes on chromosome arm 7q and predicts a poor prognosis in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia. 2003;17(9):1813–1819.PubMedCrossRefGoogle Scholar
  136. 136.
    Chim CS, Liang R, Tam CY, Kwong YL. Methylation of p15 and p16 genes in acute promyelocytic leukemia: potential diagnostic and prognostic significance. J Clin Oncol. 2001;19(7):2033–2040.PubMedGoogle Scholar
  137. 137.
    Zuckerman KS, Wicha MS. Extracellular matrix production by the adherent cells of long-term murine bone marrow cultures. Blood. 1983;61(3):540–547.PubMedGoogle Scholar
  138. 138.
    Wight TN, Kinsella MG, Keating A, Singer JW. Proteoglycans in human long-term bone marrow cultures: biochemical and ultrastructural analyses. Blood. 1986;67(5):1333–1343.PubMedGoogle Scholar
  139. 139.
    Deeg HJ, Beckham C, Loken MR, et al. Negative regulators of hemopoiesis and stroma function in patients with myelodysplastic syndrome. Leuk Lymphoma. 2000;37(3–4):405–414.PubMedGoogle Scholar
  140. 140.
    Wallace SR, Oken MM, Lunetta KL, Panoskaltsis-Mortari A, Masellis AM. Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients. Cancer. 2001;91(7):1219–1230.PubMedCrossRefGoogle Scholar
  141. 141.
    Duhrsen U, Hossfeld DK. Stromal abnormalities in neoplastic bone marrow diseases. Ann Hematol. 1996;73(2):53–70.PubMedCrossRefGoogle Scholar
  142. 142.
    Flores-Figueroa E, Arana-Trejo RM, Gutierrez-Espindola G, Perez-Cabrera A, Mayani H. Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization. Leuk Res. 2005;29(2):215–224.PubMedCrossRefGoogle Scholar
  143. 143.
    Zhang W, Knieling G, Vohwinkel G, et al. Origin of stroma cells in long-term bone marrow cultures from patients with acute myeloid leukemia. Ann Hematol. 1999;78(7):305–314.PubMedCrossRefGoogle Scholar
  144. 144.
    Taichman RS, Emerson SG. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med. 1994;179(5):1677–1682.PubMedCrossRefGoogle Scholar
  145. 145.
    Taichman RS, Reilly MJ, Verma RS, Emerson SG. Augmented production of interleukin-6 by normal human osteoblasts in response to CD34+ hematopoietic bone marrow cells in vitro. Blood. 1997;89(4):1165–1172.PubMedGoogle Scholar
  146. 146.
    Taichman RS, Emerson SG. Human osteosarcoma cell lines MG-63 and SaOS-2 produce G-CSF and GM-CSF: identification and partial characterization of cell-associated isoforms. Exp Hematol. 1996;24(4):509–517.PubMedGoogle Scholar
  147. 147.
    Taichman RS, Emerson SG. The role of osteoblasts in the hematopoietic microenvironment. Stem Cells. 1998;16(1):7–15.PubMedCrossRefGoogle Scholar
  148. 148.
    Nelissen JM, Torensma R, Pluyter M, et al. Molecular analysis of the hematopoiesis supporting osteoblastic cell line U2-OS. Exp Hematol. 2000;28(4):422–432.PubMedCrossRefGoogle Scholar
  149. 149.
    Taichman RS, Reilly MJ, Emerson SG. Human osteoblasts support human hematopoietic progenitor cells in vitro bone marrow cultures. Blood. 1996;87(2):518–524.PubMedGoogle Scholar
  150. 150.
    Bruserud O, Ryningen A, Wergeland L, Glenjen NI, Gjertsen BT. Osteoblasts increase proliferation and release of pro-angiogenic interleukin 8 by native human acute myelogenous leukemia blasts. Haematologica. 2004;89(4):391–402.PubMedGoogle Scholar
  151. 151.
    Glenjen NI, Hatfield K, Bruserud O. Coculture of native human acute myelogenous leukemia blasts with fibroblasts and osteoblasts results in an increase of vascular endothelial growth factor levels. Eur J Haematol. 2005;74(1):24–34.PubMedCrossRefGoogle Scholar
  152. 152.
    Laharrague P, Larrouy D, Fontanilles AM, et al. High expression of leptin by human bone marrow adipocytes in primary culture. FASEB J. 1998;12(9):747–752.PubMedGoogle Scholar
  153. 153.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–432.PubMedCrossRefGoogle Scholar
  154. 154.
    Umemoto Y, Tsuji K, Yang FC, et al. Leptin stimulates the proliferation of murine myelocytic and primitive hematopoietic progenitor cells. Blood. 1997;90(9):3438–3443.PubMedGoogle Scholar
  155. 155.
    Konopleva M, Mikhail A, Estrov Z, et al. Expression and function of leptin receptor isoforms in myeloid leukemia and myelodysplastic syndromes: proliferative and anti-apoptotic activities. Blood. 1999;93(5):1668–1676.PubMedGoogle Scholar
  156. 156.
    Tabe Y, Konopleva M, Igari J, Andreeff M. Spontaneous migration of acute promyelocytic leukemia cells beneath cultured bone marrow adipocytes with matched expression of the major histocompatibility complex. Rinsho Byori. 2004;52(8):642–648.PubMedGoogle Scholar
  157. 157.
    Tartaglia LA. The leptin receptor. J Biol Chem. 1997;272(10):6093–6096.PubMedGoogle Scholar
  158. 158.
    Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev. 1998;78(3):783–809.PubMedGoogle Scholar
  159. 159.
    Peled A, Lee BC, Sternberg D, Toledo J, Aracil M, Zipori D. Interactions between leukemia cells and bone marrow stromal cells: stroma-supported growth vs. serum dependence and the roles of TGF-beta and M-CSF. Exp Hematol. 1996;24(6):728–737.PubMedGoogle Scholar
  160. 160.
    Hussong JW, Rodgers GM, Shami PJ. Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood. 2000;95(1):309–313.PubMedGoogle Scholar
  161. 161.
    Padro T, Ruiz S, Bieker R, et al. Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia. Blood. 2000;95(8):2637–2644.PubMedGoogle Scholar
  162. 162.
    Korkolopoulou P, Apostolidou E, Pavlopoulos PM, et al. Prognostic evaluation of the microvascular network in myelodysplastic syndromes. Leukemia. 2001;15(9):1369–1376.PubMedCrossRefGoogle Scholar
  163. 163.
    Korkolopoulou P, Viniou N, Kavantzas N, et al. Clinicopathologic correlations of bone marrow angiogenesis in chronic myeloid leukemia: a morphometric study. Leukemia. 2003;17(1):89–97.PubMedCrossRefGoogle Scholar
  164. 164.
    Perez-Atayde AR, Sallan SE, Tedrow U, Connors S, Allred E, Folkman J. Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am J Pathol. 1997;150(3):815–821.PubMedGoogle Scholar
  165. 165.
    Pruneri G, Bertolini F, Soligo D, et al. Angiogenesis in myelodysplastic syndromes. Br J Cancer. 1999;81(8):1398–1401.PubMedCrossRefGoogle Scholar
  166. 166.
    Kini AR, Peterson LA, Tallman MS, Lingen MW. Angiogenesis in acute promyelocytic leukemia: induction by vascular endothelial growth factor and inhibition by all-trans retinoic acid. Blood. 2001;97(12):3919–3924.PubMedCrossRefGoogle Scholar
  167. 167.
    Aguayo A, Estey E, Kantarjian H, et al. Cellular vascular endothelial growth factor is a predictor of outcome in patients with acute myeloid leukemia. Blood. 1999;94(11):3717–3721.PubMedGoogle Scholar
  168. 168.
    Bellamy WT, Richter L, Frutiger Y, Grogan TM. Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies. Cancer Res. 1999;59(3):728–733.PubMedGoogle Scholar
  169. 169.
    Aguayo A, Kantarjian HM, Estey EH, et al. Plasma vascular endothelial growth factor levels have prognostic significance in patients with acute myeloid leukemia but not in patients with myelodysplastic syndromes. Cancer. 2002;95(9):1923–1930.PubMedCrossRefGoogle Scholar
  170. 170.
    Lai R, Estey E, Shen Y, et al. Clinical significance of plasma endostatin in acute myeloid leukemia/myelodysplastic syndrome. Cancer. 2002;94(1):14–17.PubMedCrossRefGoogle Scholar
  171. 171.
    Katoh O, Takahashi T, Oguri T, et al. Vascular endothelial growth factor inhibits apoptotic death in hematopoietic cells after exposure to chemotherapeutic drugs by inducing MCL1 acting as an antiapoptotic factor. Cancer Res. 1998;58(23):5565–5569.PubMedGoogle Scholar
  172. 172.
    Jensen PO, Mortensen BT, Hodgkiss RJ, et al. Increased cellular hypoxia and reduced proliferation of both normal and leukaemic cells during progression of acute myeloid leukaemia in rats. Cell Prolif. 2000;33(6):381–395.PubMedCrossRefGoogle Scholar
  173. 173.
    Mortensen BT, Jensen PO, Helledie N, et al. Changing bone marrow micro-environment during development of acute myeloid leukaemia in rats. Br J Haematol. 1998;102(2):458–464.PubMedCrossRefGoogle Scholar
  174. 174.
    Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004;10(8):858–864.PubMedCrossRefGoogle Scholar
  175. 175.
    Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature. 2003;425(6955):307–311.PubMedCrossRefGoogle Scholar
  176. 176.
    Cary LA, Han DC, Guan JL. Integrin-mediated signal transduction pathways. Histol Histopathol. 1999;14(3):1001–1009.PubMedGoogle Scholar
  177. 177.
    Giancotti FG, Ruoslahti E. Integrin signaling. Science. 1999;285(5430):1028–1032.PubMedCrossRefGoogle Scholar
  178. 178.
    Hannigan GE, Leung-Hagesteijn C, Fitz-Gibbon L, et al. Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature. 1996;379(6560):91–96.PubMedCrossRefGoogle Scholar
  179. 179.
    Persad S, Attwell S, Gray V, et al. Regulation of protein kinase B/Akt-serine 473 phosphorylation by integrin-linked kinase: critical roles for kinase activity and amino acids arginine 211 and serine 343. J Biol Chem. 2001;276(29):27462–27469.PubMedCrossRefGoogle Scholar
  180. 180.
    Wu C, Dedhar S. Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. J Cell Biol. 2001;155(4):505–510.PubMedCrossRefGoogle Scholar
  181. 181.
    Zhang Y, Guo L, Chen K, Wu C. A critical role of the PINCH-integrin-linked kinase interaction in the regulation of cell shape change and migration. J Biol Chem. 2002;277(1):318–326.PubMedCrossRefGoogle Scholar
  182. 182.
    Qian Y, Zhong X, Flynn DC, et al. ILK mediates actin filament rearrangements and cell migration and invasion through PI3K/Akt/Rac1 signaling. Oncogene. 2005;24(19):3154–3165.PubMedCrossRefGoogle Scholar
  183. 183.
    Tabe Y, Jin L, et al. Mesenchymal stem cells promote survival of leukemic cells via integrin-linked kinase (ILK)-dependent Akt and STAT3 activation: implications for leukemia therapy [abstract]. Blood. 2004;104:922a. Blood. 2004;104:922AGoogle Scholar
  184. 184.
    Konopleva M, Konoplev S, Hu W, Zaritskey AY, Afanasiev BV, Andreeff M. Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia. 2002;16(9):1713–1724.PubMedCrossRefGoogle Scholar
  185. 185.
    Bendall LJ, Makrynikola V, Hutchinson A, Bianchi AC, Bradstock KF, Gottlieb DJ. Stem cell factor enhances the adhesion of AML cells to fibronectin and augments fibronectin-mediated anti-apoptotic and proliferative signals. Leukemia. 1998;12(9):1375–1382.PubMedCrossRefGoogle Scholar
  186. 186.
    Bendall LJ, Kortlepel K, Gottlieb DJ. Human acute myeloid leukemia cells bind to bone marrow stroma via a combination of beta-1 and beta-2 integrin mechanisms. Blood. 1993;82(10):3125–3132.PubMedGoogle Scholar
  187. 187.
    Matsunaga T, Takemoto N, Sato T, et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med. 2003;9(9):1158–1165.PubMedCrossRefGoogle Scholar
  188. 188.
    Allouche M, Charrad RS, Bettaieb A, Greenland C, Grignon C, Smadja-Joffe F. Ligation of the CD44 adhesion molecule inhibits drug-induced apoptosis in human myeloid leukemia cells. Blood. 2000;96(3):1187–1190.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sergej Konoplev
    • 1
  • Carlos Bueso-Ramos
    • 1
  1. 1.Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations