Acute Myeloid Leukemias with Recurrent Cytogenetic Abnormalities

  • Sergej Konoplev
  • Carlos Bueso-Ramos
Part of the Molecular Pathology Library book series (MPLB, volume 4)


Acute leukemias are clonal malignant disorders resulting from genetic alterations in hematopoietic stem cells that limit the ability of stem cells to differentiate into red cells, granulocytes, and platelets, and lead to the proliferation of abnormal leukemic cells or “blasts.” Acute myeloid leukemias (AML), also referred to as acute nonlymphocytic leukemias, are heterogeneous disorders. The current World Health Organization (WHO) classification scheme of acute myeloid leukemia and myelodysplastic syndrome (MDS) has evolved away from the French–American–British (FAB) classification scheme, which only uses morphologic features for classifying those neoplasms. The current WHO classification scheme includes not only morphologic features, but also clinical, immunophenotypic, and cytogenetic features. The current 2008 WHO classification includes four main categories of AML: AML with recurrent genetic abnormalities, AML with myelodysplasia-related changes, therapy-related myeloid neoplasms, and AML not otherwise specified (Table 34.1). The pathogenesis and underlying molecular processes substantially differ between each of these AML groups: AMLs with recurrent cytogenetic abnormalities are discussed in this chapter after a general introduction to the topic. However, AMLs with mutated NPM1 and AMLs with mutated CEBPA will be discussed in Chap. 35, as will AMLs with normal cytogenetics. AMLs with myelodysplasia-related changes and therapy-related AMLs are discussed in Chap. 36.


Acute Myeloid Leukemia Chronic Myeloid Leukemia Reverse Transcriptase Polymerase Chain Reaction Acute Promyelocytic Leukemia Derivative Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fialkow PJ, Singer JW, Adamson JW, et al. Acute nonlymphocytic leukemia: heterogeneity of stem cell origin. Blood. 1981;57(6):1068–1073.PubMedGoogle Scholar
  2. 2.
    Brunning RD, Matutes E, Harris NL, et al. Acute myeloid leukemia. In: Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumors of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2001:75–107.Google Scholar
  3. 3.
    Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100(7):2292–2302.PubMedCrossRefGoogle Scholar
  4. 4.
    Bennett JM, Catovsky D, Daniel MT, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med. 1985;103(4):620–625.PubMedGoogle Scholar
  5. 5.
    Ries LAG, Eisner MKC. SEER Cancer statistics review, 1973–1999. Bethesda, MD: National Cancer Institute; 2002.Google Scholar
  6. 6.
    Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96.PubMedCrossRefGoogle Scholar
  7. 7.
    Linet MS, Devesa SS. Epidemiology of leukemia: overview and patterns of epidemiology of leukemia: overview and patterns of occurrence. In: Henderson ES, Lister TA, Greaves MF, eds. Leukemia. Philadelphia: WB Saunders; 2002:131–151.Google Scholar
  8. 8.
    Kinlen LJ. Leukaemia. Cancer Surv. 1994;19–20:475–491.PubMedGoogle Scholar
  9. 9.
    Hernandez JA, Land KJ, McKenna RW. Leukemias, myeloma, and other lymphoreticular neoplasms. Cancer. 1995;75(1 suppl):381–394.PubMedCrossRefGoogle Scholar
  10. 10.
    Douer D, Preston-Martin S, Chang E, Nichols PW, Watkins KJ, Levine AM. High frequency of acute promyelocytic leukemia among Latinos with acute myeloid leukemia. Blood. 1996;87(1):308–313.PubMedGoogle Scholar
  11. 11.
    Wertelecki W, Shapiro JR. 45, XO Turner’s syndrome and leukaemia. Lancet. 1970;1(7650):789–790.PubMedCrossRefGoogle Scholar
  12. 12.
    Schwartz CL, Cohen HJ. Preleukemic syndromes and other syndromes predisposing to leukemia. Pediatr Clin North Am. 1988;35(4):853–871.PubMedGoogle Scholar
  13. 13.
    Kato H, Brown CC, Hoel DG, Schull WJ. Studies of the mortality of A-bomb survivors. Report 7. Mortality, 1950–1978: Part II. Mortality from causes other than cancer and mortality in early entrants. Radiat Res. 1982;91(2):243–264.PubMedCrossRefGoogle Scholar
  14. 14.
    Kodama K, Mabuchi K, Shigematsu I. A long-term cohort study of the atomic-bomb survivors. J Epidemiol. 1996;6(3 suppl):S95–S105.PubMedGoogle Scholar
  15. 15.
    Boggs DR, Wintrobe MM, Cartwright GE. The acute leukemias. Analysis of 322 cases and review of the literature. Medicine (Baltimore). 1962;41:163–225.CrossRefGoogle Scholar
  16. 16.
    O’Regan S, Carson S, Chesney RW, Drummond KN. Electrolyte and acid-base disturbances in the management of leukemia. Blood. 1977;49(3):345–353.PubMedGoogle Scholar
  17. 17.
    Wiernik P. Diagnosis and treatment of adult acute myelocytic leukemia. In: Wiernik PH, Canellos GP, Dutcher JP, Kyle RA, eds. Neoplastic diseases of the blood. New York: Churchill Livingstone; 1996:331–351.Google Scholar
  18. 18.
    Lichtman MA, Rowe JM. Hyperleukocytic leukemias: rheological, clinical, and therapeutic considerations. Blood. 1982;60(2):279–283.PubMedGoogle Scholar
  19. 19.
    Cuttner J. Hyperleukocytosis in adult leukemias. In: Bloomfield CD, ed. Chronic and acute leukemias in adults. Boston: Martinus Nijhoff; 1985.Google Scholar
  20. 20.
    Gralnick HR, Marchesi S, Givelber H. Intravascular coagulation in acute leukemia: clinical and subclinical abnormalities. Blood. 1972;40(5):709–718.PubMedGoogle Scholar
  21. 21.
    Goad KE, Gralnick HR. Coagulation disorders in cancer. Hematol Oncol Clin North Am. 1996;10(2):457–484.PubMedCrossRefGoogle Scholar
  22. 22.
    Kubota T, Andoh K, Sadakata H, Tanaka H, Kobayashi N. Tissue factor released from leukemic cells. Thromb Haemost. 1991;65(1):59–63.PubMedGoogle Scholar
  23. 23.
    Ribeiro RC, Pui CH. The clinical and biological correlates of coagulopathy in children with acute leukemia. J Clin Oncol. 1986;4(8):1212–1218.PubMedGoogle Scholar
  24. 24.
    Scott CS, Stark AN, Limbert HJ, Master PS, Head C, Roberts BE. Diagnostic and prognostic factors in acute monocytic leukaemia: an analysis of 51 cases. Br J Haematol. 1988;69(2):247–252.PubMedCrossRefGoogle Scholar
  25. 25.
    Muller S, Sangster G, Crocker J, et al. An immunohistochemical and clinicopathological study of granulocytic sarcoma (‘chloroma’). Hematol Oncol. 1986;4(2):101–112.PubMedCrossRefGoogle Scholar
  26. 26.
    Neiman RS, Barcos M, Berard C, et al. Granulocytic sarcoma: a clinicopathologic study of 61 biopsied cases. Cancer. 1981;48(6):1426–1437.PubMedCrossRefGoogle Scholar
  27. 27.
    Abe R, Umezu H, Uchida T, et al. Myeloblastoma with an 8;21 chromosome translocation in acute myeloblastic leukemia. Cancer. 1986;58(6):1260–1264.PubMedCrossRefGoogle Scholar
  28. 28.
    Welch P, Grossi C, Carroll A, et al. Granulocytic sarcoma with an indolent course and destructive skeletal disease. Tumor characterization with immunologic markers, electron microscopy, cytochemistry, and cytogenetic studies. Cancer. 1986;57(5):1005–1010.PubMedCrossRefGoogle Scholar
  29. 29.
    Baer MR, Stewart CC, Dodge RK, et al. High frequency of immunophenotype changes in acute myeloid leukemia at relapse: implications for residual disease detection (Cancer and Leukemia Group B Study 8361). Blood. 2001;97(11):3574–3580.PubMedCrossRefGoogle Scholar
  30. 30.
    Shea B, Reddy V, Abbitt P, Benda R, Douglas V, Wingard J. Granulocytic sarcoma (chloroma) of the breast: a diagnostic dilemma and review of the literature. Breast J. 2004;10(1):48–53.PubMedCrossRefGoogle Scholar
  31. 31.
    Tsimberidou AM, Kantarjian HM, Estey E, et al. Outcome in patients with nonleukemic granulocytic sarcoma treated with chemotherapy with or without radiotherapy. Leukemia. 2003;17(6):1100–1103.PubMedCrossRefGoogle Scholar
  32. 32.
    Dusenbery KE, Howells WB, Arthur DC, et al. Extramedullary leukemia in children with newly diagnosed acute myeloid leukemia: a report from the Children’s Cancer Group. J Pediatr Hematol Oncol. 2003;25(10):760–768.PubMedCrossRefGoogle Scholar
  33. 33.
    Wiernik PH, De Bellis R, Muxi P, Dutcher JP. Extramedullary acute promyelocytic leukemia. Cancer. 1996;78(12):2510–2514.PubMedCrossRefGoogle Scholar
  34. 34.
    Meis JM, Butler JJ, Osborne BM, Manning JT. Granulocytic sarcoma in nonleukemic patients. Cancer. 1986;58(12):2697–2709.PubMedCrossRefGoogle Scholar
  35. 35.
    Bennett JM, Catovsky D, Daniel MT, et al. Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7). A report of the French-American-British Cooperative Group. Ann Intern Med. 1985;103(3):460–462.PubMedGoogle Scholar
  36. 36.
    EGIL. The value of c-kit in the diagnosis of biophenotypic acute lukemia (European Group for the Immonological Classification of Leukemias). Leukemia. 1998;12:2038.CrossRefGoogle Scholar
  37. 37.
    Bene MC, Castoldi G, Knapp W, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9(10):1783–1786.PubMedGoogle Scholar
  38. 38.
    Weir EG, Borowitz MJ. Flow cytometry in the diagnosis of acute leukemia. Semin Hematol. 2001;38(2):124–138.PubMedCrossRefGoogle Scholar
  39. 39.
    Kussick SJ, Wood BL. Using 4-color flow cytometry to identify abnormal myeloid populations. Arch Pathol Lab Med. 2003;127(9):1140–1147.PubMedGoogle Scholar
  40. 40.
    Kussick SJ, Fromm JR, Rossini A, et al. Four-color flow cytometry shows strong concordance with bone marrow morphology and cytogenetics in the evaluation for myelodysplasia. Am J Clin Pathol. 2005;124(2):170–181.PubMedCrossRefGoogle Scholar
  41. 41.
    Byrd JC, Mrozek K, Dodge RK, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002;100(13):4325–4336.PubMedCrossRefGoogle Scholar
  42. 42.
    Forestier E, Heim S, Blennow E, et al. Cytogenetic abnormalities in childhood acute myeloid leukaemia: a Nordic series comprising all children enrolled in the NOPHO-93-AML trial between 1993 and 2001. Br J Haematol. 2003;121(4):566–577.PubMedCrossRefGoogle Scholar
  43. 43.
    Haferlach T, Schnittger S, Kern W, Hiddemann W, Schoch C. Genetic classification of acute myeloid leukemia (AML). Ann Hematol. 2004;83(suppl 1):S97-S100.PubMedGoogle Scholar
  44. 44.
    Lion T, Haas OA, Harbott J, et al. The translocation t(1;22)(p13;q13) is a nonrandom marker specifically associated with acute megakaryocytic leukemia in young children. Blood. 1992;79(12):3325–3330.PubMedGoogle Scholar
  45. 45.
    Haferlach T, Kohlmann A, Schnittger S, et al. Global approach to the diagnosis of leukemia using gene expression profiling. Blood. 2005;106(4):1189–1198.PubMedCrossRefGoogle Scholar
  46. 46.
    Kottaridis PD, Gale RE, Frew ME, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001;98(6):1752–1759.PubMedCrossRefGoogle Scholar
  47. 47.
    Whitman SP, Archer KJ, Feng L, et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res. 2001;61(19):7233–7239.PubMedGoogle Scholar
  48. 48.
    Caligiuri MA, Strout MP, Lawrence D, et al. Rearrangement of ALL1 (MLL) in acute myeloid leukemia with normal cytogenetics. Cancer Res. 1998;58(1):55–59.PubMedGoogle Scholar
  49. 49.
    Dohner K, Tobis K, Ulrich R, et al. Prognostic significance of partial tandem duplications of the MLL gene in adult patients 16 to 60 years old with acute myeloid leukemia and normal cytogenetics: a study of the Acute Myeloid Leukemia Study Group Ulm. J Clin Oncol. 2002;20(15):3254–3261.PubMedCrossRefGoogle Scholar
  50. 50.
    Preudhomme C, Sagot C, Boissel N, et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood. 2002;100(8):2717–2723.PubMedCrossRefGoogle Scholar
  51. 51.
    Baldus CD, Tanner SM, Ruppert AS, et al. BAALC expression predicts clinical outcome of de novo acute myeloid leukemia patients with normal cytogenetics: a Cancer and Leukemia Group B Study. Blood. 2003;102(5):1613–1618.PubMedCrossRefGoogle Scholar
  52. 52.
    Haferlach T, Schoch C, Loffler H, et al. Morphologic dysplasia in de novo acute myeloid leukemia (AML) is related to unfavorable cytogenetics but has no independent prognostic relevance under the conditions of intensive induction therapy: results of a multiparameter analysis from the German AML Cooperative Group studies. J Clin Oncol. 2003;21(2):256–265.PubMedCrossRefGoogle Scholar
  53. 53.
    Estey E, Thall P, Beran M, Kantarjian H, Pierce S, Keating M. Effect of diagnosis (refractory anemia with excess blasts, refractory anemia with excess blasts in transformation, or acute myeloid leukemia [AML]) on outcome of AML-type chemotherapy. Blood. 1997;90(8):2969–2977.PubMedGoogle Scholar
  54. 54.
    Cline MJ. The molecular basis of leukemia. N Engl J Med. 1994;330:328–336.PubMedCrossRefGoogle Scholar
  55. 55.
    Rabbitts TH. Translocations, master genes, and differences between the origins of acute and chronic leukemias. Cell. 1991;67(4):641–644.PubMedCrossRefGoogle Scholar
  56. 56.
    Grisendi S, Mecucci C, Falini B, Pandolfi PP. Nucleophosmin and cancer. Nat Rev Cancer. 2006;6(7):493–505.PubMedCrossRefGoogle Scholar
  57. 57.
    Wechsler J, Greene M, McDevitt MA, et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet. 2002;32(1):148–152.PubMedCrossRefGoogle Scholar
  58. 58.
    Schwieger M, Lohler J, Fischer M, Herwig U, Tenen DG, Stocking C. A dominant-negative mutant of C/EBPalpha, associated with acute myeloid leukemias, inhibits differentiation of myeloid and erythroid progenitors of man but not mouse. Blood. 2004;103(7):2744–2752.PubMedCrossRefGoogle Scholar
  59. 59.
    Yergeau DA, Hetherington CJ, Wang Q, et al. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat Genet. 1997;15(3):303–306.PubMedCrossRefGoogle Scholar
  60. 60.
    Okuda T, Cai Z, Yang S, et al. Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood. 1998;91(9):3134–3143.PubMedGoogle Scholar
  61. 61.
    Rosenbauer F, Wagner K, Zhang P, Knobeloch KP, Iwama A, Tenen DG. pDP4, a novel glycoprotein secreted by mature granulocytes, is regulated by transcription factor PU.1. Blood. 2004;103(11):4294–4301.PubMedCrossRefGoogle Scholar
  62. 62.
    Owens BM, Hawley RG. HOX and non-HOX homeobox genes in leukemic hematopoiesis. Stem Cells. 2002;20(5):364–379.PubMedCrossRefGoogle Scholar
  63. 63.
    Buonamici S, Chakraborty S, Senyuk V, Nucifora G. The role of EVI1 in normal and leukemic cells. Blood Cells Mol Dis. 2003;31(2):206–212.PubMedCrossRefGoogle Scholar
  64. 64.
    He LZ, Bhaumik M, Tribioli C, et al. Two critical hits for promyelocytic leukemia. Mol Cell. 2000;6(5):1131–1141.PubMedCrossRefGoogle Scholar
  65. 65.
    Gilliland DG, Tallman MS. Focus on acute leukemias. Cancer Cell. 2002;1(5):417–420.PubMedCrossRefGoogle Scholar
  66. 66.
    Peterson LF, Boyapati A, Ahn EY, et al. Acute myeloid leukemia with the 8q22;21q22 translocation: secondary mutational events and alternative t(8;21) transcripts. Blood. 2007;110(3):799–805.PubMedCrossRefGoogle Scholar
  67. 67.
    Czuczman MS, Dodge RK, Stewart CC, et al. Value of immunophenotype in intensively treated adult acute lymphoblastic leukemia: cancer and leukemia Group B study 8364. Blood. 1999;93(11):3931–3939.PubMedGoogle Scholar
  68. 68.
    Huret JL, Dessen P, Bernheim A. An atlas of chromosomes in hematological malignancies. Example: 11q23 and MLL partners. Leukemia. 2001;15(6):987–989.PubMedCrossRefGoogle Scholar
  69. 69.
    Pedersen-Bjergaard J, Christiansen DH, Desta F, Andersen MK. Alternative genetic pathways and cooperating genetic abnormalities in the pathogenesis of therapy-related myelodysplasia and acute myeloid leukemia. Leukemia. 2006;20(11):1943–1949.PubMedCrossRefGoogle Scholar
  70. 70.
    Mrozek K, Heerema NA, Bloomfield CD. Cytogenetics in acute leukemia. Blood Rev. 2004;18(2):115–136.PubMedCrossRefGoogle Scholar
  71. 71.
    Giles FJ, Keating A, Goldstone AH, Avivi I, Willman CL, Kantarjian HM. Acute myeloid leukemia. Hematology Am Soc Hematol Educ Program 2002:73–110.Google Scholar
  72. 72.
    McKenzie SB. Advances in understanding the biology and genetics of acute myelocytic leukemia. Clin Lab Sci. 2005;18(1):28–37.PubMedGoogle Scholar
  73. 73.
    Smith SM, Le Beau MM, Huo D, et al. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood. 2003;102(1):43–52.PubMedCrossRefGoogle Scholar
  74. 74.
    Kinzler KW, Vogelstein B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature. 1997;386(6627):761. 763.PubMedCrossRefGoogle Scholar
  75. 75.
    Osato M. Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Oncogene. 2004;23(24):4284–4296.PubMedCrossRefGoogle Scholar
  76. 76.
    Pedersen-Bjergaard J, Andersen MK, Christiansen DH, Nerlov C. Genetic pathways in therapy-related myelodysplasia and acute myeloid leukemia. Blood. 2002;99(6):1909–1912.PubMedCrossRefGoogle Scholar
  77. 77.
    Greaves MF, Wiemels J. Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer. 2003;3(9):639–649.PubMedCrossRefGoogle Scholar
  78. 78.
    Swansbury GJ, Lawler SD, Alimena G, et al. Long-term survival in acute myelogenous leukemia: a second follow-up of the Fourth International Workshop on Chromosomes in Leukemia. Cancer Genet Cytogenet. 1994;73(1):1–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Nucifora G, Rowley JD. AML1 and the 8;21 and 3;21 translocations in acute and chronic myeloid leukemia. Blood. 1995;86(1):1–14.PubMedGoogle Scholar
  80. 80.
    Martinez-Climent JA, Lane NJ, Rubin CM, et al. Clinical and prognostic significance of chromosomal abnormalities in childhood acute myeloid leukemia de novo. Leukemia. 1995;9(1):95–101.PubMedGoogle Scholar
  81. 81.
    Nakamura H, Kuriyama K, Sadamori N, et al. Morphological subtyping of acute myeloid leukemia with maturation (AML-M2): homogeneous pink-colored cytoplasm of mature neutrophils is most characteristic of AML-M2 with t(8;21). Leukemia. 1997;11(5):651–655.PubMedCrossRefGoogle Scholar
  82. 82.
    Sawyers CL. Molecular genetics of acute leukaemia. Lancet. 1997;349(9046):196–200.PubMedCrossRefGoogle Scholar
  83. 83.
    Gao J, Erickson P, Gardiner K, et al. Isolation of a yeast artificial chromosome spanning the 8;21 translocation breakpoint t(8;21)(q22;q22.3) in acute myelogenous leukemia. Proc Natl Acad Sci U S A. 1991;88(11):4882–4886.PubMedCrossRefGoogle Scholar
  84. 84.
    Maruyama F, Yang P, Stass SA, et al. Detection of the AML1/ETO fusion transcript in the t(8;21) masked translocation in acute myelogenous leukemia. Cancer Res. 1993;53(19):4449–4451.PubMedGoogle Scholar
  85. 85.
    Kusec R, Laczika K, Knobl P, et al. AML1/ETO fusion mRNA can be detected in remission blood samples of all patients with t(8;21) acute myeloid leukemia after chemotherapy or autologous bone marrow transplantation. Leukemia. 1994;8(5):735–739.PubMedGoogle Scholar
  86. 86.
    Jurlander J, Caligiuri MA, Ruutu T, et al. Persistence of the AML1/ETO fusion transcript in patients treated with allogeneic bone marrow transplantation for t(8;21) leukemia. Blood. 1996;88(6):2183–2191.PubMedGoogle Scholar
  87. 87.
    Greaves M. Pre-natal origins of childhood leukemia. Rev Clin Exp Hematol. 2003;7(3):233–245.PubMedGoogle Scholar
  88. 88.
    Kalwinsky DK, Raimondi SC, Schell MJ, et al. Prognostic importance of cytogenetic subgroups in de novo pediatric acute nonlymphocytic leukemia. J Clin Oncol. 1990;8(1):75–83.PubMedGoogle Scholar
  89. 89.
    Liu PP, Hajra A, Wijmenga C, Collins FS. Molecular pathogenesis of the chromosome 16 inversion in the M4Eo subtype of acute myeloid leukemia. Blood. 1995;85(9):2289–2302.PubMedGoogle Scholar
  90. 90.
    Bitter MA, Le Beau MM, Rowley JD, Larson RA, Golomb HM, Vardiman JW. Associations between morphology, karyotype, and clinical features in myeloid leukemias. Hum Pathol. 1987;18(3):211–225.PubMedCrossRefGoogle Scholar
  91. 91.
    Merzianu M, Medeiros LJ, Cortes J, et al. inv(16)(p13q22) in chronic myelogenous leukemia in blast phase: a clinicopathologic, cytogenetic, and molecular study of five cases. Am J Clin Pathol. 2005;124(5):807–814.PubMedCrossRefGoogle Scholar
  92. 92.
    Tobal K, Johnson PR, Saunders MJ, Harrison CJ, Liu Yin JA. Detection of CBFB/MYH11 transcripts in patients with inversion and other abnormalities of chromosome 16 at presentation and remission. Br J Haematol. 1995;91(1):104–108.PubMedCrossRefGoogle Scholar
  93. 93.
    Marlton P, Keating M, Kantarjian H, et al. Cytogenetic and clinical correlates in AML patients with abnormalities of chromosome 16. Leukemia. 1995;9(6):965–971.PubMedGoogle Scholar
  94. 94.
    van der Reijden BA, Dauwerse JG, Wessels JW, et al. A gene for a myosin peptide is disrupted by the inv(16)(p13q22) in acute nonlymphocytic leukemia M4Eo. Blood. 1993;82(10):2948–2952.PubMedGoogle Scholar
  95. 95.
    Claxton DF, Liu P, Hsu HB, et al. Detection of fusion transcripts generated by the inversion 16 chromosome in acute myelogenous leukemia. Blood. 1994;83(7):1750–1756.PubMedGoogle Scholar
  96. 96.
    Shurtleff SA, Meyers S, Hiebert SW, et al. Heterogeneity in CBF beta/MYH11 fusion messages encoded by the inv(16)(p13q22) and the t(16;16)(p13;q22) in acute myelogenous leukemia. Blood. 1995;85(12):3695–3703.PubMedGoogle Scholar
  97. 97.
    Zhao W, Claxton DF, Medeiros LJ, et al. Immunohistochemical analysis of CBFbeta-SMMHC protein reveals a unique nuclear localization in acute myeloid leukemia with inv(16)(p13q22). Am J Surg Pathol. 2006;30(11):1436–1444.PubMedCrossRefGoogle Scholar
  98. 98.
    Sun X, Zhang W, Ramdas L, et al. Comparative analysis of genes regulated in acute myelomonocytic leukemia with and without inv(16)(p13q22) using microarray techniques, real-time PCR, immunohistochemistry, and flow cytometry immunophenotyping. Mod Pathol. 2007;20(8):811–820.PubMedCrossRefGoogle Scholar
  99. 99.
    Vyas RC, Frankel SR, Agbor P, Miller WH Jr, Warrell RP Jr, Hittelman WN. Probing the pathobiology of response to all-trans retinoic acid in acute promyelocytic leukemia: premature chromosome condensation/fluorescence in situ hybridization analysis. Blood. 1996;87(1):218–226.PubMedGoogle Scholar
  100. 100.
    Brown D, Kogan S, Lagasse E, et al. A PMLRARalpha transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci U S A. 1997;94(6):2551–2556.PubMedCrossRefGoogle Scholar
  101. 101.
    He LZ, Tribioli C, Rivi R, et al. Acute leukemia with promyelocytic features in PML/RARalpha transgenic mice. Proc Natl Acad Sci U S A. 1997;94(10):5302–5307.PubMedCrossRefGoogle Scholar
  102. 102.
    Warrell RP Jr, de The H, Wang ZY, Degos L. Acute promyelocytic leukemia. N Engl J Med. 1993;329(3):177–189.PubMedCrossRefGoogle Scholar
  103. 103.
    Kakizuka A, Miller WH Jr, Umesono K, et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell. 1991;66(4):663–674.PubMedCrossRefGoogle Scholar
  104. 104.
    de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell. 1991;66(4):675–684.PubMedCrossRefGoogle Scholar
  105. 105.
    Gallagher RE, Willman CL, Slack JL, et al. Association of PML-RAR alpha fusion mRNA type with pretreatment hematologic characteristics but not treatment outcome in acute promyelocytic leukemia: an intergroup molecular study. Blood. 1997;90(4):1656–1663.PubMedGoogle Scholar
  106. 106.
    Lin P, Hao S, Medeiros LJ, et al. Expression of CD2 in acute promyelocytic leukemia correlates with short form of PML-RARalpha transcripts and poorer prognosis. Am J Clin Pathol. 2004;121(3):402–407.PubMedCrossRefGoogle Scholar
  107. 107.
    Li YP, Andersen J, Zelent A, et al. RAR alpha1/RAR alpha2-PML mRNA expression in acute promyelocytic leukemia cells: a molecular and laboratory-clinical correlative study. Blood. 1997;90(1):306–312.PubMedGoogle Scholar
  108. 108.
    Schad CR, Hanson CA, Paietta E, Casper J, Jalal SM, Dewald GW. Efficacy of fluorescence in situ hybridization for detecting PML/RARA gene fusion in treated and untreated acute promyelocytic leukemia. Mayo Clin Proc. 1994;69(11):1047–1053.PubMedGoogle Scholar
  109. 109.
    Falini B, Flenghi L, Fagioli M, et al. Immunocytochemical diagnosis of acute promyelocytic leukemia (M3) with the monoclonal antibody PG-M3 (anti-PML). Blood. 1997;90(10):4046–4053.PubMedGoogle Scholar
  110. 110.
    Miller WH Jr, Levine K, DeBlasio A, Frankel SR, Dmitrovsky E, Warrell RP Jr. Detection of minimal residual disease in acute promyelocytic leukemia by a reverse transcription polymerase chain reaction assay for the PML/RAR-alpha fusion mRNA. Blood. 1993;82(6):1689–1694.PubMedGoogle Scholar
  111. 111.
    Zhao L, Chang KS, Estey EH, Hayes K, Deisseroth AB, Liang JC. Detection of residual leukemic cells in patients with acute promyelocytic leukemia by the fluorescence in situ hybridization method: potential for predicting relapse. Blood. 1995;85(2):495–499.PubMedGoogle Scholar
  112. 112.
    Chen W, Rassidakis GZ, Li J, et al. High frequency of NPM1 gene mutations in acute myeloid leukemia with prominent nuclear invaginations (“cuplike” nuclei). Blood. 2006;108(5):1783–1784.PubMedCrossRefGoogle Scholar
  113. 113.
    Licht JD, Chomienne C, Goy A, et al. Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood. 1995;85(4):1083–1094.PubMedGoogle Scholar
  114. 114.
    Chen SJ, Zelent A, Tong JH, et al. Rearrangements of the retinoic acid receptor alpha and promyelocytic leukemia zinc finger genes resulting from t(11;17)(q23;q21) in a patient with acute promyelocytic leukemia. J Clin Invest. 1993;91(5):2260–2267.PubMedCrossRefGoogle Scholar
  115. 115.
    Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood. 1996;87(3):882–886.PubMedGoogle Scholar
  116. 116.
    Mrozek K, Heinonen K, Lawrence D, et al. Adult patients with de novo acute myeloid leukemia and t(9; 11)(p22; q23) have a superior outcome to patients with other translocations involving band 11q23: a cancer and leukemia group B study. Blood. 1997;90(11):4532–4538.PubMedGoogle Scholar
  117. 117.
    Super HJ, McCabe NR, Thirman MJ, et al. Rearrangements of the MLL gene in therapy-related acute myeloid leukemia in patients previously treated with agents targeting DNA-topoisomerase II. Blood. 1993;82(12):3705–3711.PubMedGoogle Scholar
  118. 118.
    Joh T, Hosokawa Y, Suzuki R, Takahashi T, Seto M. Establishment of an inducible expression system of chimeric MLL-LTG9 protein and inhibition of Hox a7, Hox b7 and Hox c9 expression by MLL-LTG9 in 32Dc13 cells. Oncogene. 1999;18(4):1125–1130.PubMedCrossRefGoogle Scholar
  119. 119.
    Caslini C, Shilatifard A, Yang L, Hess JL. The amino terminus of the mixed lineage leukemia protein (MLL) promotes cell cycle arrest and monocytic differentiation. Proc Natl Acad Sci USA. 2000;97(6):2797–2802.PubMedCrossRefGoogle Scholar
  120. 120.
    Oyarzo MP, Lin P, Glassman A, Bueso-Ramos CE, Luthra R, Medeiros LJ. Acute myeloid leukemia with t(6;9)(p23;q34) is associated with dysplasia and a high frequency of flt3 gene mutations. Am J Clin Pathol. 2004;122(3):348–358.PubMedCrossRefGoogle Scholar
  121. 121.
    Lillington DM, MacCallum PK, Lister TA, Gibbons B. Translocation t(6;9)(p23;q34) in acute myeloid leukemia without myelodysplasia or basophilia: two cases and a review of the literature. Leukemia. 1993;7(4):527–531.PubMedGoogle Scholar
  122. 122.
    Kraemer D, Wozniak RW, Blobel G, Radu A. The human CAN protein, a putative oncogene product associated with myeloid leukemogenesis, is a nuclear pore complex protein that faces the cytoplasm. Proc Natl Acad Sci U S A. 1994;91(4):1519–1523.PubMedCrossRefGoogle Scholar
  123. 123.
    Fornerod M, Boer J, van Baal S, et al. Relocation of the carboxyterminal part of CAN from the nuclear envelope to the nucleus as a result of leukemia-specific chromosome rearrangements. Oncogene. 1995;10(9):1739–1748.PubMedGoogle Scholar
  124. 124.
    Nakano H, Shimamoto Y, Suga K, Kobayashi M. Detection of minimal residual disease in a patient with acute myeloid leukemia and t(6;9) at the time of peripheral blood stem cell transplantation. Acta Haematol. 1995;94(3):139–141.PubMedCrossRefGoogle Scholar
  125. 125.
    Slovak ML, Kopecky KJ, Cassileth PA, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood. 2000;96(13):4075–4083.PubMedGoogle Scholar
  126. 126.
    Grigg AP, Gascoyne RD, Phillips GL, Horsman DE. Clinical, haematological and cytogenetic features in 24 patients with structural rearrangements of the Q arm of chromosome 3. Br J Haematol. 1993;83(1):158–165.PubMedCrossRefGoogle Scholar
  127. 127.
    Shi G, Weh HJ, Duhrsen U, Zeller W, Hossfeld DK. Chromosomal abnormality inv(3)(q21q26) associated with multilineage hematopoietic progenitor cells in hematopoietic malignancies. Cancer Genet Cytogenet. 1997;96(1):58–63.PubMedCrossRefGoogle Scholar
  128. 128.
    Secker-Walker LM, Mehta A, Bain B. Abnormalities of 3q21 and 3q26 in myeloid malignancy: a United Kingdom Cancer Cytogenetic Group study. Br J Haematol. 1995;91(2):490–501.PubMedCrossRefGoogle Scholar
  129. 129.
    Bitter MA, Neilly ME, Le Beau MM, Pearson MG, Rowley JD. Rearrangements of chromosome 3 involving bands 3q21 and 3q26 are associated with normal or elevated platelet counts in acute nonlymphocytic leukemia. Blood. 1985;66(6):1362–1370.PubMedGoogle Scholar
  130. 130.
    Sweet DL, Golomb HM, Rowley JD, Vardiman JM. Acute myelogenous leukemia and thrombocythemia associated with an abnormality of chromosome N0.3. Cancer Genet Cytogenet. 1979;1:33–37.CrossRefGoogle Scholar
  131. 131.
    Morishita K, Parganas E, William CL, et al. Activation of EVI1 gene expression in human acute myelogenous leukemias by translocations spanning 300–400 kilobases on chromosome band 3q26. Proc Natl Acad Sci U S A. 1992;89(9):3937–3941.PubMedCrossRefGoogle Scholar
  132. 132.
    Wieser R, Volz A, Schnittger S, et al. Mapping of leukaemia-associated breakpoints in chromosome band 3q21 using a newly established PAC contig. Br J Haematol. 2000;110(2):343–350.PubMedCrossRefGoogle Scholar
  133. 133.
    Suzukawa K, Parganas E, Gajjar A, et al. Identification of a breakpoint cluster region 3′ of the ribophorin I gene at 3q21 associated with the transcriptional activation of the EVI1 gene in acute myelogenous leukemias with inv(3)(q21q26). Blood. 1994;84(8):2681–2688.PubMedGoogle Scholar
  134. 134.
    Kreider BL, Orkin SH, Ihle JN. Loss of erythropoietin responsiveness in erythroid progenitors due to expression of the Evi-1 myeloid-transforming gene. Proc Natl Acad Sci U S A. 1993;90(14):6454–6458.PubMedCrossRefGoogle Scholar
  135. 135.
    Raza A, Buonamici S, Lisak L, et al. Arsenic trioxide and thalidomide combination produces multi-lineage hematological responses in myelodysplastic syndromes patients, particularly in those with high pre-therapy EVI1 expression. Leuk Res. 2004;28(8):791–803.PubMedCrossRefGoogle Scholar
  136. 136.
    Fonatsch C, Gudat H, Lengfelder E, et al. Correlation of cytogenetic findings with clinical features in 18 patients with inv(3)(q21q26) or t(3;3)(q21;q26). Leukemia. 1994;8(8):1318–1326.PubMedGoogle Scholar
  137. 137.
    Reiter E, Greinix H, Rabitsch W, et al. Low curative potential of bone marrow transplantation for highly aggressive acute myelogenous leukemia with inversioin inv (3)(q21q26) or homologous translocation t(3;3) (q21;q26). Ann Hematol. 2000;79(7):374–377.PubMedCrossRefGoogle Scholar
  138. 138.
    Bernstein J, Dastugue N, Haas OA, et al. Nineteen cases of the t(1;22)(p13;q13) acute megakaryblastic leukaemia of infants/children and a review of 39 cases: report from a t(1;22) study group. Leukemia. 2000;14(1):216–218.PubMedCrossRefGoogle Scholar
  139. 139.
    Carroll A, Civin C, Schneider N, et al. The t(1;22) (p13;q13) is nonrandom and restricted to infants with acute megakaryoblastic leukemia: a Pediatric Oncology Group Study. Blood. 1991;78(3):748–752.PubMedGoogle Scholar
  140. 140.
    Duchayne E, Fenneteau O, Pages MP, et al. Acute megakaryoblastic leukaemia: a national clinical and biological study of 53 adult and childhood cases by the Groupe Francais d’Hematologie Cellulaire (GFHC). Leuk Lymphoma. 2003;44(1):49–58.PubMedCrossRefGoogle Scholar
  141. 141.
    Ma Z, Morris SW, Valentine V, et al. Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat Genet. 2001;28(3):220–221.PubMedCrossRefGoogle Scholar
  142. 142.
    Hess JL. MLL: a histone methyltransferase disrupted in leukemia. Trends Mol Med. 2004;10(10):500–507.PubMedCrossRefGoogle Scholar
  143. 143.
    Daser A, Rabbitts TH. The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis. Semin Cancer Biol. 2005;15(3):175–188.PubMedCrossRefGoogle Scholar
  144. 144.
    Hilden JM, Smith FO, Frestedt JL, et al. MLL gene rearrangement, cytogenetic 11q23 abnormalities, and expression of the NG2 molecule in infant acute myeloid leukemia. Blood. 1997;89(10):3801–3805.PubMedGoogle Scholar
  145. 145.
    Biondi A, Cimino G, Pieters R, Pui CH. Biological and therapeutic aspects of infant leukemia. Blood. 2000;96(1):24–33.PubMedGoogle Scholar
  146. 146.
    Thirman MJ, Gill HJ, Burnett RC, et al. Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocations. N Engl J Med. 1993;329(13):909–914.PubMedCrossRefGoogle Scholar
  147. 147.
    Rubnitz JE, Behm FG, Downing JR. 11q23 rearrangements in acute leukemia. Leukemia. 1996;10(1):74–82.PubMedGoogle Scholar
  148. 148.
    Tkachuk DC, Kohler S, Cleary ML. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell. 1992;71(4):691–700.PubMedCrossRefGoogle Scholar
  149. 149.
    Ayton PM, Cleary ML. Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev. 2003;17(18):2298–2307.PubMedCrossRefGoogle Scholar
  150. 150.
    Milne TA, Briggs SD, Brock HW, et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell. 2002;10(5):1107–1117.PubMedCrossRefGoogle Scholar
  151. 151.
    Armstrong SA, Staunton JE, Silverman LB, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet. 2002;30(1):41–47.PubMedCrossRefGoogle Scholar
  152. 152.
    Lavau C, Luo RT, Du C, Thirman MJ. Retrovirus-mediated gene transfer of MLL-ELL transforms primary myeloid progenitors and causes acute myeloid leukemias in mice. Proc Natl Acad Sci U S A. 2000;97(20):10984–10989.PubMedCrossRefGoogle Scholar
  153. 153.
    Martin ME, Milne TA, Bloyer S, et al. Dimerization of MLL fusion proteins immortalizes hematopoietic cells. Cancer Cell. 2003;4(3):197–207.PubMedCrossRefGoogle Scholar
  154. 154.
    Gu Y, Alder H, Nakamura T, et al. Sequence analysis of the breakpoint cluster region in the ALL-1 gene involved in acute leukemia. Cancer Res. 1994;54(9):2326–2330.Google Scholar
  155. 155.
    Broeker PL, Super HG, Thirman MJ, et al. Distribution of 11q23 breakpoints within the MLL breakpoint cluster region in de novo acute leukemia and in treatment-related acute myeloid leukemia: correlation with scaffold attachment regions and topoisomerase II consensus binding sites. Blood. 1996;87(5):1912–1922.PubMedGoogle Scholar
  156. 156.
    Bernard OA, Berger R. Molecular basis of 11q23 rearrangements in hematopoietic malignant proliferations. Genes Chromosomes Cancer. 1995;13(2):75–85.PubMedCrossRefGoogle Scholar
  157. 157.
    Caligiuri MA, Schichman SA, Strout MP, et al. Molecular rearrangement of the ALL-1 gene in acute myeloid leukemia without cytogenetic evidence of 11q23 chromosomal translocations. Cancer Res. 1994;54(2):370–373.PubMedGoogle Scholar
  158. 158.
    Repp R, Borkhardt A, Haupt E, et al. Detection of four different 11q23 chromosomal abnormalities by multiplex-PCR and fluorescence-based automatic DNA-fragment analysis. Leukemia. 1995;9(1):210–215.PubMedGoogle Scholar
  159. 159.
    Ridge SA, Cabrera ME, Ford AM, et al. Rapid intraclonal switch of lineage dominance in congenital leukaemia with a MLL gene rearrangement. Leukemia. 1995;9(12):2023–2026.PubMedGoogle Scholar
  160. 160.
    Hunger SP, McGavran L, Meltesen L, Parker NB, Kassenbrock CK, Bitter MA. Oncogenesis in utero: fetal death due to acute myelogenous leukaemia with an MLL translocation. Br J Haematol. 1998;103(2):539–542.PubMedCrossRefGoogle Scholar
  161. 161.
    Greaves MF, Maia AT, Wiemels JL, Ford AM. Leukemia in twins: lessons in natural history. Blood. 2003;102(7):2321–2333.PubMedCrossRefGoogle Scholar
  162. 162.
    Eguchi M, Eguchi-Ishimae M, Greaves M. The role of the MLL gene in infant leukemia. Int J Hematol. 2003;78(5):390–401.PubMedCrossRefGoogle Scholar
  163. 163.
    Adler HT, Chinery R, Wu DY, et al. Leukemic HRX fusion proteins inhibit GADD34-induced apoptosis and associate with the GADD34 and hSNF5/INI1 proteins. Mol Cell Biol. 1999;19(10):7050–7060.PubMedGoogle Scholar
  164. 164.
    Wiederschain D, Kawai H, Gu J, Shilatifard A, Yuan ZM. Molecular basis of p53 functional inactivation by the leukemic protein MLL-ELL. Mol Cell Biol. 2003;23(12):4230–4246.PubMedCrossRefGoogle Scholar
  165. 165.
    Wiemels JL, Pagnamenta A, Taylor GM, Eden OB, Alexander FE, Greaves MF. A lack of a functional NAD(P)H:quinone oxidoreductase allele is selectively associated with pediatric leukemias that have MLL fusions. United Kingdom Childhood Cancer Study Investigators. Cancer Res. 1999;59(16):4095–4099.PubMedGoogle Scholar
  166. 166.
    Felix CA, Walker AH, Lange BJ, et al. Association of CYP3A4 genotype with treatment-related leukemia. Proc Natl Acad Sci U S A. 1998;95(22):13176–13181.PubMedCrossRefGoogle Scholar
  167. 167.
    Rowley JD, Reshmi S, Sobulo O, et al. All patients with the T(11;16)(q23;p13.3) that involves MLL and CBP have treatment-related hematologic disorders. Blood. 1997;90(2):535–541.PubMedGoogle Scholar
  168. 168.
    Hillion J, Le Coniat M, Jonveaux P, Berger R, Bernard OA. AF6q21, a novel partner of the MLL gene in t(6;11)(q21;q23), defines a forkhead transcriptional factor subfamily. Blood. 1997;90(9):3714–3719.PubMedGoogle Scholar
  169. 169.
    Corral J, Forster A, Thompson S, et al. Acute leukemias of different lineages have similar MLL gene fusions encoding related chimeric proteins resulting from chromosomal translocation. Proc Natl Acad Sci U S A. 1993;90(18):8538–8542.PubMedCrossRefGoogle Scholar
  170. 170.
    Bernard OA, Mauchauffe M, Mecucci C, Van den Berghe H, Berger R. A novel gene, AF-1p, fused to HRX in t(1;11)(p32;q23), is not related to AF-4, AF-9 nor ENL. Oncogene. 1994;9(4):1039–1045.PubMedGoogle Scholar
  171. 171.
    Prasad R, Leshkowitz D, Gu Y, et al. Leucine-zipper dimerization motif encoded by the AF17 gene fused to ALL-1 (MLL) in acute leukemia. Proc Natl Acad Sci U S A. 1994;91(17):8107–8111.PubMedCrossRefGoogle Scholar
  172. 172.
    Chaplin T, Bernard O, Beverloo HB, et al. The t(10;11) translocation in acute myeloid leukemia (M5) consistently fuses the leucine zipper motif of AF10 onto the HRX gene. Blood. 1995;86(6):2073–2076.PubMedGoogle Scholar
  173. 173.
    Schnittger S, Kinkelin U, Schoch C, et al. Screening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML. Leukemia. 2000;14(5):796–804.PubMedCrossRefGoogle Scholar
  174. 174.
    Steudel C, Wermke M, Schaich M, et al. Comparative analysis of MLL partial tandem duplication and FLT3 internal tandem duplication mutations in 956 adult patients with acute myeloid leukemia. Genes Chromosomes Cancer. 2003;37(3):237–251.PubMedCrossRefGoogle Scholar
  175. 175.
    Andersen MK, Christiansen DH, Kirchhoff M, Pedersen-Bjergaard J. Duplication or amplification of chromosome band 11q23, including the unrearranged MLL gene, is a recurrent abnormality in therapy-related MDS and AML, and is closely related to mutation of the TP53 gene and to previous therapy with alkylating agents. Genes Chromosomes Cancer. 2001;31(1):33–41.PubMedCrossRefGoogle Scholar
  176. 176.
    Arai Y, Hosoda F, Kobayashi H, et al. The inv(11)(p15q22) chromosome translocation of de novo and therapy-related myeloid malignancies results in fusion of the nucleoporin gene, NUP98, with the putative RNA helicase gene, DDX10. Blood. 1997;89(11):3936–3944.PubMedGoogle Scholar
  177. 177.
    Savitsky K, Ziv Y, Bar-Shira A, et al. A human gene (DDX10) encoding a putative DEAD-box RNA helicase at 11q22-q23. Genomics. 1996;33(2):199–206.PubMedCrossRefGoogle Scholar
  178. 178.
    Kong XT, Ida K, Ichikawa H, et al. Consistent detection of TLS/FUS-ERG chimeric transcripts in acute myeloid leukemia with t(16;21)(p11;q22) and identification of a novel transcript. Blood. 1997;90(3):1192–1199.PubMedGoogle Scholar
  179. 179.
    Ferro MR, Cabello P, Garcia-Sagredo JM, Resino M, San Roman C, Larana JG. t(16;21) in a Ph positive CML. Cancer Genet Cytogenet. 1992;60(2):210–211.PubMedCrossRefGoogle Scholar
  180. 180.
    Ichikawa H, Shimizu K, Hayashi Y, Ohki M. An RNA-binding protein gene, TLS/FUS, is fused to ERG in human myeloid leukemia with t(16;21) chromosomal translocation. Cancer Res. 1994;54(11):2865–2868.PubMedGoogle Scholar
  181. 181.
    Prasad DD, Ouchida M, Lee L, Rao VN, Reddy ES. TLS/FUS fusion domain of TLS/FUS-erg chimeric protein resulting from the t(16;21) chromosomal translocation in human myeloid leukemia functions as a transcriptional activation domain. Oncogene. 1994;9(12):3717–3729.PubMedGoogle Scholar
  182. 182.
    Hagemeijer A, Hahlen K, Abels J. Cytogenetic follow-up of patients with nonlymphocytic leukemia. II. Acute nonlymphocytic leukemia. Cancer Genet Cytogenet. 1981;3(2):109–124.PubMedCrossRefGoogle Scholar
  183. 183.
    Buijs A, Sherr S, van Baal S, et al. Translocation (12;22) (p13;q11) in myeloproliferative disorders results in fusion of the ETS-like TEL gene on 12p13 to the MN1 gene on 22q11. Oncogene. 1995;10(8):1511–1519.PubMedGoogle Scholar
  184. 184.
    Lekanne Deprez RH, Riegman PH, Groen NA, et al. Cloning and characterization of MN1, a gene from chromosome 22q11, which is disrupted by a balanced translocation in a meningioma. Oncogene. 1995;10(8):1521–1528.PubMedGoogle Scholar
  185. 185.
    Hanslip JI, Swansbury GJ, Pinkerton R, Catovsky D. The translocation t(8;16)(p11;p13) defines an AML subtype with distinct cytology and clinical features. Informa Healthcare. 1992:479–486.Google Scholar
  186. 186.
    Quesnel B, Kantarjian H, Bjergaard JP, et al. Therapy-related acute myeloid leukemia with t(8;21), inv(16), and t(8;16): a report on 25 cases and review of the literature. J Clin Oncol. 1993;11(12):2370–2379.PubMedGoogle Scholar
  187. 187.
    Borrow J, Stanton VP Jr, Andresen JM, et al. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet. 1996;14(1):33–41.PubMedCrossRefGoogle Scholar
  188. 188.
    Petrij F, Giles RH, Dauwerse HG, et al. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature. 1995;376(6538):348–351.PubMedCrossRefGoogle Scholar
  189. 189.
    Yin CC, Cortes J, Barkoh B, Hayes K, Kantarjian H, Jones D. t(3;21)(q26;q22) in myeloid leukemia: an aggressive syndrome of blast transformation associated with hydroxyurea or antimetabolite therapy. Cancer. 2006;106(8):1730–1738.PubMedCrossRefGoogle Scholar
  190. 190.
    Nucifora G, Begy CR, Kobayashi H, et al. Consistent intergenic splicing and production of multiple transcripts between AML1 at 21q22 and unrelated genes at 3q26 in (3;21)(q26;q22) translocations. Proc Natl Acad Sci U S A. 1994;91(9):4004–4008.PubMedCrossRefGoogle Scholar
  191. 191.
    Paietta E, Racevskis J, Bennett JM, et al. Biologic heterogeneity in Philadelphia chromosome-positive acute leukemia with myeloid morphology: the Eastern Cooperative Oncology Group experience. Leukemia. 1998;12(12):1881–1885.PubMedCrossRefGoogle Scholar
  192. 192.
    Kurzrock R, Gutterman JU, Talpaz M. The molecular genetics of Philadelphia chromosome-positive leukemias. N Engl J Med. 1988;319(15):990–998.PubMedCrossRefGoogle Scholar
  193. 193.
    Sato Y, Abe S, Mise K, et al. Reciprocal translocation involving the short arms of chromosomes 7 and 11, t(7p−;11p+), associated with myeloid leukemia with maturation. Blood. 1987;70(5):1654–1658.PubMedGoogle Scholar
  194. 194.
    Kwong YL, Chan TK. Translocation (7;11)(p15;p15) in acute myeloid leukemia M2: association with trilineage myelodysplasia and giant dysplastic myeloid cells. Am J Hematol. 1994;47(1):62–64.PubMedCrossRefGoogle Scholar
  195. 195.
    Nakamura T, Largaespada DA, Lee MP, et al. Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nat Genet. 1996;12(2):154–158.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sergej Konoplev
    • 1
  • Carlos Bueso-Ramos
    • 1
  1. 1.Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations