Advertisement

Molecular Pathogenesis of Myelodysplastic Syndromes

  • Jesalyn J. Taylor
  • Chung-Che “Jeff” Chang
Chapter
Part of the Molecular Pathology Library book series (MPLB, volume 4)

Abstract

Myelodysplastic syndromes (MDSs) are a collection of clonal stem cell hematopoietic disorders that are characterized by ineffective hematopoiesis, multilineage dysplasia, peripheral cytopenias, and susceptibility to leukemic transformation. The complexity of the biologic, clinical, morphologic, and genetic features of MDSs has led to evolving classification systems, including the French–American–British (FAB) classification, which was introduced in 1982, and the subsequent World Health Organization (WHO) classification (1999), which was most recently updated in 2008. Although some of the revisions to the FAB classification remain controversial, the WHO recommendations for MDS classification continue to gain increasing acceptance. Table 33.1 presents the current 2008 WHO classification and criteria for MDSs along with the corresponding FAB designations. Common presenting symptoms include fatigue, infection, pallor, bruising, and/or bleeding; however, patients may also be asymptomatic at diagnosis. Adverse outcomes arising from MDSs include bleeding, anemia, infection, and progression to acute myeloid leukemia (AML), which is often refractory to standard treatments.

Keywords

Acute Myeloid Leukemia International Prognostic Scoring System Leukemic Transformation Ineffective Hematopoiesis Congenital Dyserythropoietic Anemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Nishino HT, Chang CC. Myelodysplastic syndromes – clinicopathologic features, pathobiology, and molecular pathogenesis. Arch Pathol Lab Med. 2005;129(10):1299–1310.PubMedGoogle Scholar
  2. 2.
    Brunning RD. Myelodysplastic syndromes. In: Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. World Health Organization Classification of Tumours. Pathology & Genetics: Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: International Agency for Research on Cancer Press; 2008:88–93.Google Scholar
  3. 3.
    Brunning RD. Myelodysplastic syndromes. In: Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. World Health Organization Classification of Tumours. Pathology & Genetics: Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: International Agency for Research on Cancer Press; 2001:63–73.Google Scholar
  4. 4.
    Haas OA, Gadner H. Pathogenesis, biology, and management of myelodysplastic syndromes in children. Semin Hematol. 1996;33:225–235.PubMedGoogle Scholar
  5. 5.
    Locatelli F, Zecca M, Pession A, et al. Myelodysplastic syndromes: the pediatric point of view. Haematologica. 1995;80:268–279.PubMedGoogle Scholar
  6. 6.
    McMullin MF, Chisholm M, Hows JM. Congenital myelodysplasia: a newly described disease entity? British J Haematol. 1991;79:340–342.CrossRefGoogle Scholar
  7. 7.
    Greenberg P, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89:2079–2088.PubMedGoogle Scholar
  8. 8.
    Malcovati L, Germing U, Kuendgen A, et al. Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J Clin Oncol. 2007;25:3503–3510.PubMedCrossRefGoogle Scholar
  9. 9.
    Alessandrino EP, Della Porta MG, Bacigalupo A, et al. WHO classification and WPSS predict posttransplantation outcome in patients with myelodysplastic syndrome: a study from the Gruppo Italiano Trapianto di Midollo Osseo (GITMO). Blood. 2008;112:895–902.PubMedCrossRefGoogle Scholar
  10. 10.
    List AF, Vardiman J, Issa JP, Witte TM. Myelodysplastic syndromes. Hematology Am Soc Hematol Educ Program. 2004:297–317.Google Scholar
  11. 11.
    Claus R, Lubbert M. Epigenetic targets in hematopoietic malignancies. Oncogene. 2003;22:6489–6496.PubMedCrossRefGoogle Scholar
  12. 12.
    Hofmann WK, Koeffler HP. Myelodysplastic syndrome. Annu Rev Med. 2005;56:1–16.PubMedCrossRefGoogle Scholar
  13. 13.
    Van den Berghe H, Michaux L. 5q-, twenty-five years later: a synopsis. Cancer Genet Cytogenet. 1997;94:1–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Nimer SD, Golde DW. The 5q- abnormality. Blood. 1987;70:1705–1712.PubMedGoogle Scholar
  15. 15.
    Steensma DP, List AF. Genetic testing in the myelodysplastic syndromes: molecular insights into hematologic diversity. Mayo Clin Proc. 2005;80(5):681–698.PubMedCrossRefGoogle Scholar
  16. 16.
    Ebert BL, Pretz J, Bosco J, et al. Identification of RPS14 as 5q- syndrome gene by RNA interference screen. Nature. 2008;451(17):335–339.PubMedCrossRefGoogle Scholar
  17. 17.
    List A, Dewald G, Bennett J, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Eng J Med. 2006;355:1456–1465.CrossRefGoogle Scholar
  18. 18.
    Melchert M, Kale V, List A. The role of lenalidomide in the treatment of patients with chromosome 5q deletion and other myelodysplastic syndromes. Curr Opin Hematol. 2007;14:123–129.PubMedCrossRefGoogle Scholar
  19. 19.
    List A, Kurtin S, Roe D, et al. Effacy of lenalidomide in myelodysplastic syndromes. N Eng J Med. 2005;352:549–557.CrossRefGoogle Scholar
  20. 20.
    Melchert M, Kale V, List A. The role of lenalidomide in the treatment of patients with chromosome 5q deletion and other myelodyspolastic syndromes. Curr Opin Hematol. 2007;14:123–129.PubMedCrossRefGoogle Scholar
  21. 21.
    Le Beau MM, Espinosa R III, Davis EM, et al. Cytogenetic and molecular delineation of a region of chromosome 7 commonly deleted in malignant myeloid diseases. Blood. 1996;88:1930–1935.PubMedGoogle Scholar
  22. 22.
    Neuman WL, Rubin CM, Rios RB, et al. Chromosomal loss and deletion are the most common mechanisms for loss of heterozygosity from chromosomes 5 and 7 in malignant myeloid disorders. Blood. 1992;79:1501–1510.PubMedGoogle Scholar
  23. 23.
    Mhawech P, Saleem A. Myelodysplastic syndrome: review of the cytogenetic and molecular data. Crit Rev Oncol Hematol. 2001;40:229–238.PubMedCrossRefGoogle Scholar
  24. 24.
    Roulston D, Espinosa R III, Stoffel M, et al. Molecular genetics of myeloid leukemia: identification of the commonly deleted segment of chromosome 20. Blood. 1993;82:3424–3429.PubMedGoogle Scholar
  25. 25.
    Asimakopoulos FA, White NJ, Nacheva E, Green AR. Molecular analysis of chromosome 20q deletions associated with myeloproliferative disorders and myelodysplastic syndromes. Blood. 1994;84:3086–3094.PubMedGoogle Scholar
  26. 26.
    United Kingdom Cancer Cytogenetics Group (UKCCG). Loss of the Y chromosome from normal and neoplastic bone marrows. Genes Chrom Cancer. 1992;5:83–88.CrossRefGoogle Scholar
  27. 27.
    Dierlmam J, Michaux L, Ciel A, et al. Isodicentric (x)(q13) in haematological malignancies: presentation of five new cases, application of fluorescence in situ hybridization (HSH) and review of the literature. Br J Haemat. 1995;91:885–891.CrossRefGoogle Scholar
  28. 28.
    Pellagatti A, Esoof N, Watkins F, et al. Gene expression profiling in the myelodysplastic syndromes using cDNA microarray technology. Br J Haematol. 2004;25:576–583.CrossRefGoogle Scholar
  29. 29.
    Harada H, Harada Y, Niimi H, et al. High incidence of somatic mutations in the AML/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood. 2004;103:2316–2324.PubMedCrossRefGoogle Scholar
  30. 30.
    Steensma DP, Gibbons RJ, Mesa RA, et al. Somatic point mutations in RUNX1/CBFA2/AML1 are common in high-risk myelodysplastic syndrome, but not in myelofibrosis with myeloid metaplasia. Eur J Haematol. 2005;74:47–53.PubMedCrossRefGoogle Scholar
  31. 31.
    Gibbons RJ, Pellagatti A, Garric D, et al. Identification of acquired somatic mutations in the gene encoding chromatin-remodeling factor ATRX in the alpha-thalessemia myelodysplasia syndrome (ATMDS). Nat Genet. 2003;34:446–449.PubMedCrossRefGoogle Scholar
  32. 32.
    Stensma DP, Higgs DR, Fisher CA, Gibbons RJ. Acquired somatic ATRX mutations in myelodysplastic syndrome associated with the alpha thalassemia (ATMDS) convey a more severe hematologic phenotype than germline ATRX mutations. Blood. 2004;103:2019–2026.CrossRefGoogle Scholar
  33. 33.
    Hofmann WK, de Vos S, Komor M, et al. Characterizationof gene expression of CD34+ cells from normal and myelodysplastic bone marrow. Blood. 2002;100:3553–3560.PubMedCrossRefGoogle Scholar
  34. 34.
    Chen G, Zeng W, Miyazato A, et al. Distinctive gene expression profiles of CD34 cells from patients with myelodysplastic syndrome characterized by specific chromosomal abnormalities. Blood. 2004;104:4210–4218.PubMedCrossRefGoogle Scholar
  35. 35.
    Miyazato A, Ueno S, Ohmine K, et al. Identificationof myelodysplastic syndrome-specific genes by DNA microarray analysis with purified hematopoietic stem cell fraction. Blood. 2001;98:422–427.PubMedCrossRefGoogle Scholar
  36. 36.
    Ueda M, Ota J, Yamashita Y, et al. DNA microarray analysis of stage progression mechanism in myelodysplastic syndrome. Br J Haematol. 2003;123:288–296.PubMedCrossRefGoogle Scholar
  37. 37.
    Shivdasani RA. MircoRNAs: regulators of gene expression and cell differentiation. Blood. 2006;108:3646–3653.PubMedCrossRefGoogle Scholar
  38. 38.
    Nimer SD. Myelodysplastic syndromes. Blood. 2008;111:4841–4851.PubMedCrossRefGoogle Scholar
  39. 39.
    Georgantas RW III, Hildreth R, Morisot S, et al. CD34+ hematopoietic stem-progenitor cell mircoRNA expression and function: A circuit diagram of differentiation control. Proc Natl Acad Sci USA. 2007;104(8):2750–2755.PubMedCrossRefGoogle Scholar
  40. 40.
    Aivado M, Spentzos D, Germing U, et al. Serum proteome profiling detects myelodysplastic syndromes and identifies CXC chemokine ligands 4 and 7 as markers for advanced disease. Proc Natl Acad Sci USA. 2007;104(4):1307–1312.PubMedCrossRefGoogle Scholar
  41. 41.
    Beth Israel Deaconess Medical Center (2007). Role for proteomics in identifying hematologic malignancies. ScienceDaily. Available at: http://www.sciencedaily.com/releases/2007/01/070111092753.htm. Accessed October 15, 2008.
  42. 42.
    Ganser A, Morgan MA, Weissinger EM. Going from genes to proteins in myelodysplastic syndrome. Proc Natl Acad Sci USA. 2007;104(4):1109–1110.PubMedCrossRefGoogle Scholar
  43. 43.
    Gondek LP, Tiu R, O’Keefe CL, et al. Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. Blood. 2008;111(3):1534–1542.PubMedCrossRefGoogle Scholar
  44. 44.
    Gondek LP, Haddad AS, O’Keefe CL, et al. Detection of cryptic chromosomal lesions including acquired segmental uniparental disomy in advanced and low-risk myelodysplastic syndromes. Exp Hematol. 2007;35:1728–1738.PubMedCrossRefGoogle Scholar
  45. 45.
    Mohamedali A, Gaken J, Twine NA, et al. Prevalence and prognostic significance of allelic imbalance by single nucleotide polymorphism analysis in low risk myelodysplastic syndromes. Blood. 2007;110:3365–3373.PubMedCrossRefGoogle Scholar
  46. 46.
    Huang WT, Yang X, Zhou X, et al. Multiple distinct clones may co-exist in different lineages in myelodysplastic syndromes. Leuk Res. 2009;33:847–853.PubMedCrossRefGoogle Scholar
  47. 47.
    Campioni D, Secchiero P, Corallini F, et al. Evidence for a role of TNF-related apoptosis-inducing ligand (TRAIL) in the anemia of myelodysplastic syndrome. Am J Pathol. 2005;166(2):557–563.PubMedGoogle Scholar
  48. 48.
    Broxmeyer HE, Williams DE, Lu L, et al. The suppressive influences of human tumor necrosis factors on bone marrow hematopoietic progenitor cells from normal donors and patients with leukemia: synergism of tumor necrosis factor and interferon-gamma. J Immunol. 1986;136:4487–4495.PubMedGoogle Scholar
  49. 49.
    Smith CA, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell. 1994;76:959–962.PubMedCrossRefGoogle Scholar
  50. 50.
    Nagata S, Golstein P. The Fas death factor. Science. 1995;267:1449–1456.PubMedCrossRefGoogle Scholar
  51. 51.
    Maciejewski J, Selleri C, Anderson S, Young NS. Fas antigen expression on CD34+ human marrow cells is induced by interferon gamma and tumor necrosis factor alpha and potentiates cytokine-mediated hematopoietic suppression in vitro. Blood. 1995;85:3183–3190.PubMedGoogle Scholar
  52. 52.
    Raza A, Mundle S, Shetty V, et al. Novel insights into the biology of myelodysplastic syndromes: excessive apoptosis and the role of cytokines. Int J Hematol. 1996;63:265–278.PubMedCrossRefGoogle Scholar
  53. 53.
    Shetty V, Mundle S, Alvi S, et al. Measurement of apoptosis, proliferation and three cytokines in 46 patients with myelodysplastic syndromes. Leuk Res. 1996;20:891–900.PubMedCrossRefGoogle Scholar
  54. 54.
    Raza A, Gezer S, Mundle S, et al. Apoptosis in bone marrow biopsy samples involving stromal and hematopoietic cells in 50 patients with myelodysplastic syndromes. Blood. 1995;86:268–276.PubMedGoogle Scholar
  55. 55.
    Dar S, Mundle S, Andric T, et al. Biological characteristics of myelodysplastic syndrome patients who demonstrated high versus no intramedullary apoptosis. Eur J Haemat. 1996;62:90–94.CrossRefGoogle Scholar
  56. 56.
    Stirewalt DL, Mhyre AJ, Marcondes M, et al. Tumor necrosis factor-induced gene expression in human marrow stroma: clues to the pathophysiology of MDS. Br J Haematol. 2007;140(4):444–453.PubMedCrossRefGoogle Scholar
  57. 57.
    Flores-Figueroa E, Gutierrez-Espindola G, Montesinos JJ, et al. In vitro characterization of hematopoietic microenvironment cells from patients with myelodysplastic syndrome [see comment]. Leuk Res. 2002;26:677–686.PubMedCrossRefGoogle Scholar
  58. 58.
    Gersuk GM, Beckham C, Loken MR, et al. A role for tumor necrosis factor-alpha FAS and FAS-Ligand in marrow failure associated with myelodysplastic syndrome. Br J Haematol. 1998;103:176–188.PubMedCrossRefGoogle Scholar
  59. 59.
    Kitagawa M, Saito I, Kuwata T, et al. Overexpression of tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma by bone marrow cells from patients with myelodysplastic syndromes. Leukemia. 1997;11:2049–2054.PubMedCrossRefGoogle Scholar
  60. 60.
    Deeg HJ, Beckham C, Loken MR, et al. Negative regulators of hemopoiesis and stroma function in patients with myelodysplastic syndrome. Leuk Lymphoma. 2000;37:405–414.PubMedGoogle Scholar
  61. 61.
    Allampallam K, Shetty V, Mundle S, et al. Biological significance of proliferation, apoptosis, cytokines, and monocyte/macrophage cells in bone marrow biopsies of 145 patients with myelodysplastic syndrome. Int J Hemat. 2002;75:289–297.CrossRefGoogle Scholar
  62. 62.
    Reza S, Dar S, Andric T, et al. Biologic characteristics of 164 patients with myelodysplastic syndromes. Leuk Lymphoma. 1999;33:281–287.PubMedGoogle Scholar
  63. 63.
    Powers MP, Nishino H, Luo Y, et al. Polymorphisms in TGF-beta and TNF-alpha are associated with the Myelodysplastic syndrome phenotype. Arch Pathol Lab Med. 2007;113:35–39.Google Scholar
  64. 64.
    Schaeffer HJ, Weber MJ. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol. 1999;19(4):2435–2444.PubMedGoogle Scholar
  65. 65.
    Chang L, Karin M. Mammalian MAP kinase signaling cascades. Nature. 2001;410:37–40.PubMedCrossRefGoogle Scholar
  66. 66.
    Dong C, Davis RJ, Flavell RA. MAP kinases in the immune response. Annu Rev Immunol. 2002;20:55–72.PubMedCrossRefGoogle Scholar
  67. 67.
    Platanias LC. Map kinase signaling pathways and hematologic malignancies. Blood. 2003;101(12):4667–4679.PubMedCrossRefGoogle Scholar
  68. 68.
    Munir S, Dunphy C, Ewton A, et al. p38 mitogen activated protein kinase has different degrees of activation in myeloproliferative disorders and myelodysplastic syndromes. Am J Clin Pathol. 2008;130(4):635–641.CrossRefGoogle Scholar
  69. 69.
    De Maria R, Zeuner A, Eramo A, et al. Negative regulation of erythropoiesis by capase-mediated cleavage of GATA-1. Nature. 1999;401:489–493.PubMedCrossRefGoogle Scholar
  70. 70.
    Zamai L, Secchiero P, Pierpalo S, et al. TNF-related apoptosis-inducing ligand (TRAIL) as a negative regulator of normal human erythropoiesis. Blood. 2000;95:3716–3724.PubMedGoogle Scholar
  71. 71.
    Secchiero P, Melloni E, Heikinheimo M, et al. TRAIL regulates normal erythroid maturation through an ERK-dependent pathway. Blood. 2004;103:517–522.PubMedCrossRefGoogle Scholar
  72. 72.
    Schmidt U, van den Akker E, Parren-van Amelsvoort M, et al. Btk is required for an efficient response to erythropoietin and for SCF-controlled protection against TRAIL in erythroid cells. J Exp Med. 2004;199:785–795.PubMedCrossRefGoogle Scholar
  73. 73.
    Zang DY, Goodwin RG, Loken MR, Bryant E, Deeg HJ. Expression of tumor necrosis factor-related apoptosis-inducing ligand, Ap02L, and its receptors in myelodysplastic syndrome: effects on in vitro hemopoiesis. Blood. 2001;98:3058–3065.PubMedCrossRefGoogle Scholar
  74. 74.
    Yunis JJ, Boot AJ, Mayer MG, Bos JL. Mechanisms of ras mutation in myelodysplastic syndrome. Oncogene. 1989;4:609–614.PubMedGoogle Scholar
  75. 75.
    Bos JL. ras oncogenes in human cancer: a review. Cancer Res. 1989;49:4682–4689.PubMedGoogle Scholar
  76. 76.
    Hirai H, Ishikawa F. The N-ras oncogene in myelodysplastic syndrome and leukemia. Nippon Ketsueki Gakkai Zasshi. 1988;51:1463–1470.PubMedGoogle Scholar
  77. 77.
    Paquett RL, Landaw EM, Pierre RV, et al. N-ras mutations are associated with poor prognosis and increased risk of leukemia in myelodysplastic syndrome. Blood. 1993;82:590–599.Google Scholar
  78. 78.
    Padua RA, Guinn BA, et al. Ras, FMS and p53 mutations and poor clinical outcome in myelodysplasias; a 10–year follow-up. Leukemia. 1998;12:887–892.PubMedCrossRefGoogle Scholar
  79. 79.
    Tobal K, Pagliuca A, Bhatt B, et al. Mutation of the human FMS gene (M-CSF receptor) in myelodysplastic syndromes and acute myeloid leukemia. Leukemia. 1990;4:486–489.PubMedGoogle Scholar
  80. 80.
    Nienhuis AW, Bunn HF, Turner PH, et al. Expression of the human c-fms proto-oncogene in hematopoietic cells and its deletion in the 5q- syndrome. Cell. 1985;42:421–428.PubMedCrossRefGoogle Scholar
  81. 81.
    Pixley FJ, Stanley ER. CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol. 2004;14:628–638.PubMedCrossRefGoogle Scholar
  82. 82.
    Rettenmier CW, Roussel MF. Differential processing of colony-stimulating factor 1 precursors encoded by two human cDNAs. Mol Cell Biol. 1988;8:5026–5034.PubMedGoogle Scholar
  83. 83.
    Ridge SA, Worwood M, Oscier D, et al. FMS mutations in myelodysplastic, leukemic, and normal subjects. Proc Natl Acad Sci USA. 1990;87:1377–1380.PubMedCrossRefGoogle Scholar
  84. 84.
    Mitani K. Chromosomal abnormalities and oncogenes. Int J Hematol. 1996;63:81–93.PubMedCrossRefGoogle Scholar
  85. 85.
    Brooks DJ, Woodward S, Thompson FH, et al. Expression of the zinc finger gene EVI-1 in ovarian and other cancers. Br J Cancer. 1996;74:1518–1525.PubMedCrossRefGoogle Scholar
  86. 86.
    Ogawa S, Mitani K, Kurokawa M, et al. Abnormal expression of Evi-1 gene in human leukemias. Hum Cell. 1996;9:323–332.PubMedGoogle Scholar
  87. 87.
    Uchida T, Kinoshita T, Nagai H, et al. Hypermethylation of the p15INK4B gene in myelodysplastic syndromes. Blood. 1997;90:1403–1409.PubMedGoogle Scholar
  88. 88.
    Aoki E, Uchida T, Ohashi H, et al. Methylation status of the p15INK4B gene in hematopoietic progenitors and peripheral blood cells in myelodysplastic syndromes. Leukemia. 2000;14:586–593.PubMedCrossRefGoogle Scholar
  89. 89.
    Tien HF, Tang JH, Tsay W, et al. Methylation of the p15(INK4B) gene in myelodysplastic syndrome: it can be detected early at diagnosis or during disease progression and is highly associated with leukaemic transformation. Br J Haematol. 2001;112:148–154.PubMedCrossRefGoogle Scholar
  90. 90.
    Aktas D, Arno MJ, Rassool F, Mufti GJ. Analysis of CHK2 in patients with myelodysplastic syndromes. Leuk Res. 2002;26:985–987.PubMedCrossRefGoogle Scholar
  91. 91.
    Hofmann WK, Miller CW, Tsukasaki K, et al. Mutation analysis of the DNA-damage checkpoint gene CHK2 in myelodysplastic syndromes and acute myeloid leukemias. Leuk Res. 2001;25:333–338.PubMedCrossRefGoogle Scholar
  92. 92.
    Kikukawa M, Aoki N, Sakamoto Y, Mori M. Study of p53 in elderly patients with myelodysplastic syndromes by immunohistochemistry and DNA analysis. Am J Pathol. 1999;155:717–721.PubMedGoogle Scholar
  93. 93.
    Poppe B, Vandesompele J, Schoch C, et al. Expression analyses identified MLL as a prominent target of 11q23 amplification and support an etiologic role for MLL gain of function in myeloid malignancies. Blood. 2004;103:229–235.PubMedCrossRefGoogle Scholar
  94. 94.
    Davis RE, Greenberg PL. Bcl-2 expression by myeloid precursors in myelodysplastic syndromes: relation to disease progression. Leuk Res. 1998;22:767–777.PubMedCrossRefGoogle Scholar
  95. 95.
    Kurotaki H, Tsushima Y, Nagai K, Yagihashi S. Apoptosis, bcl-2 expression and p53 accumulation in myelodysplastic syndrome, myelodysplastic-syndrome-derived acute myelogenous leukemia and de novo acute myelogenous leukemia. Acta Haematol. 2000;102:115–123.PubMedCrossRefGoogle Scholar
  96. 96.
    Delia D, Aiello A, Soligo D, et al. bcl-2 proto-oncogene expression in normal and neoplastic human myeloid cells. Blood. 1992;79:1291–1298.PubMedGoogle Scholar
  97. 97.
    Rajapaksa R, Ginzton N, Rott LS, Greenberg PL. Altered oncoprotein expression and apoptosis in myelodysplastic syndrome marrow cells. Blood. 1996;88:4275–4287.PubMedGoogle Scholar
  98. 98.
    Kitagawa M, Yoshida S, Kuwata T, et al. p53 expression in myeloid cells of myelodysplastic syndrome: association with evolution of overt leukemia. Am J Pathol. 1994;145:338–344.PubMedGoogle Scholar
  99. 99.
    Estey EH. Modulation of angiogenesis in patients with myelodysplastic syndrome. Best Pract Res Clin Haematol. 2004;17:623–639.PubMedGoogle Scholar
  100. 100.
    Bertolini F, Mancuso P, Gobbi A, Pruneri G. The thin red line: angiogenesis in normal and malignant hematopoiesis. Exp Hematol. 2000;28:993–1000.PubMedCrossRefGoogle Scholar
  101. 101.
    Mangi MH, Newland AC. Angiogenesis and angiogenic mediators in haematological malignancies. Br J Haematol. 2000;111:43–51.PubMedCrossRefGoogle Scholar
  102. 102.
    Talks KL, Harris AL. Current status of antiangiogenic factors. Br J Haematol. 2000;109:447–489.CrossRefGoogle Scholar
  103. 103.
    Fox SB, Harris AL. Markers of tumor angiogenesis; clinical applications in prognosis and anti-angiogenic therapy. Invest New Drugs. 1997;15:15–28.PubMedCrossRefGoogle Scholar
  104. 104.
    Pruneri G, Bertolini F, Soligo D, et al. Angiogenesis in myelodysplastic syndromes. Br J Cancer. 1999;81:1398–1401.PubMedCrossRefGoogle Scholar
  105. 105.
    Korkolopoulou P, Apostolidou E, Pavlopoulous PM, et al. Prognostic evaluation of the microvasclar network in myelodysplastic syndromes. Leukemia. 2001;15:1369–1376.PubMedCrossRefGoogle Scholar
  106. 106.
    Albitar M. Angiogenesis in acute myeloid leukemia and myelodysplastic syndrome. Acta Haematol. 2001;106:170–176.PubMedCrossRefGoogle Scholar
  107. 107.
    Aguayo A, Kantarjian H, Manshouri T, et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood. 2000;96:2240–2245.PubMedGoogle Scholar
  108. 108.
    Zhou J, Mauerer K, Farina L, Gribben JG. The role of the tumor microenvironment in hematological malignancies and implication for therapy. Front Biosci. 2005;10:1581–1596.PubMedCrossRefGoogle Scholar
  109. 109.
    Horiike S, Okato S, Nakao M, et al. Tandem duplications of the FLT3 receptor gene are associated with leukemic transformation of myelodysplasia. Leukemia. 1997;11:1442–1446.PubMedCrossRefGoogle Scholar
  110. 110.
    Yokato S, Kiyoi H, Nakao M, et al. Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies: a study on a large series of patients and cell lines. Leukemia. 1997;11:1605–1609.CrossRefGoogle Scholar
  111. 111.
    Yamamoto Y, Kiyoi H, Nakano Y, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood. 2001;97:2434–2439.PubMedCrossRefGoogle Scholar
  112. 112.
    Leone G, Francesco D, Zardo G, et al. Epigenetic treatment of myelodysplastic syndromes and acute myeloid leukemias. Curr Med Chem. 2008;15:4841–4851.CrossRefGoogle Scholar
  113. 113.
    Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):638–692.CrossRefGoogle Scholar
  114. 114.
    Lubbert M. Gene silencing of the p15/INK4B cell-cycle inhibitor by hypermethylation: an early or later epigenetic alteration in myelodysplastic syndromes? Leukemia. 2003;17:1762–1764.PubMedCrossRefGoogle Scholar
  115. 115.
    Langer F, Dingemann J, Kreipe H, Lehmann U. Up-regulation of DNA methyltransferases DNMT 1, 3A, and 3B in myelodysplastic syndrome. Leuk Res. 2005;29:325.PubMedCrossRefGoogle Scholar
  116. 116.
    Liu TX, Becker MW, Jelinek J, et al. Chromosome 5q deletion and epigenetic suppression of the gene encoding α-catenin (CTNNA1) in myeloid cell transformation. Nat Med. 2007;13:78–83.PubMedCrossRefGoogle Scholar
  117. 117.
    Laird PW. Cancer epigenetics. Hum Mol Genet. 2005;14:R65–R76.PubMedCrossRefGoogle Scholar
  118. 118.
    Kaminskas E, Farrell AT, Wang YC, et al. FDA drug approval summary: azacitidine (5–azacytidine, VidazaTM) for injectable suspension. Oncologist. 2005;10:176.PubMedCrossRefGoogle Scholar
  119. 119.
    Kaminskas E, Farrell A, Abraham S, et al. Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res. 2005;11:3604.PubMedCrossRefGoogle Scholar
  120. 120.
    Garcia-Manero G. Modifying the epigenome as a therapeutic strategy in myelodysplasia. Hematology Am Soc Hematol Educ Program. 2007;2007:405–411.Google Scholar
  121. 121.
    Chim CS, Liang R, Kwong YL. Gene promoter hypermethylation in hematologic malignancies. Hematol Oncol. 2002;20(4):167–176.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jesalyn J. Taylor
    • 1
  • Chung-Che “Jeff” Chang
    • 2
    • 3
  1. 1.Department of PathologyThe Methodist Hospital and The Methodist Research InstituteHoustonUSA
  2. 2.The Methodist HospitalHoustonUSA
  3. 3.Department of PathologyWeill Medical College of Cornell UniversityNew YorkUSA

Personalised recommendations