Molecular Pathology of Myelodysplastic/Myeloproliferative Neoplasms, Myeloid and Lymphoid Neoplasms with Eosinophilia and Abnormalities of PDGFRA, PDGFRB, and FGFR1, and Mastocytosis

  • Robert P. Hasserjian
Part of the Molecular Pathology Library book series (MPLB, volume 4)


Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are clonal hematopoietic neoplasms that display features of both myeloproliferative neoplasms (MPN) and myelodysplastic syndromes (MDS). They typically display some degree of effective hematopoiesis, manifested by an increase in one or more peripheral counts and/or organomegaly due to extramedullary hematopoiesis. However, they also exhibit aspects of ineffective hematopoiesis with one or more cytopenias, morphologic dysplasia, and/or abnormal effector cell function. Although MDS/MPN entities have in common this combined discase phenotype, within each disease entity there is often a wide spectrum of clinical presentations, in some cases resembling “pure” MDS and in others “pure” MPN entities. Myeloblasts may be increased in MDS/MPN cases, and in some of these entities blast count defines prognostic groups as with MDS; however, the bone marrow (BM) and peripheral blood (PB) blast count is always less than 20%.


Systemic Mastocytosis JAK2 V617F JAK2 V617F Mutation JAK2 Mutation Myeloid Neoplasm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Germing U, Gattermann N, Minning H, Heyll A, Aul C. Problems in the classification of CMML – dysplastic versus proliferative type. Leuk Res. 1998;22(10):871–878.PubMedCrossRefGoogle Scholar
  2. 2.
    Martiat P, Michaux JL, Rodhain J. Philadelphia-negative (Ph−) chronic myeloid leukemia (CML): comparison with Ph+ CML and chronic myelomonocytic leukemia. The Groupe Francais de Cytogenetique Hematologique. Blood. 1991;78(1):205–211.PubMedGoogle Scholar
  3. 3.
    Paquette RL, Landaw EM, Pierre RV, et al. N-ras mutations are associated with poor prognosis and increased risk of leukemia in myelodysplastic syndrome. Blood. 1993;82(2):590–599.PubMedGoogle Scholar
  4. 4.
    Haase D, Fonatsch C, Freund M, et al. Cytogenetic findings in 179 patients with myelodysplastic syndromes. Ann Hematol. 1995;70(4):171–187.PubMedCrossRefGoogle Scholar
  5. 5.
    Cytogenetics of chronic myelomonocytic leukemia. Cancer Genet Cytogenet. 1986;21(1):11–30.Google Scholar
  6. 6.
    Chronic myelomonocytic leukemia: single entity or heterogeneous disorder? A prospective multicenter study of 100 patients. Groupe Francais de Cytogenetique Hematologique. Cancer Genet Cytogenet. 1991;55(1):57–65.Google Scholar
  7. 7.
    Onida F, Kantarjian HM, Smith TL, et al. Prognostic factors and scoring systems in chronic myelomonocytic leukemia: a retrospective analysis of 213 patients. Blood. 2002;99(3):840–849.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen B, Zhao WL, Jin J, et al. Clinical and cytogenetic features of 508 Chinese patients with myelodysplastic syndrome and comparison with those in Western countries. Leukemia. 2005;19(5):767–775.PubMedCrossRefGoogle Scholar
  9. 9.
    Bacher U, Haferlach T, Kern W, Hiddemann W, Schnittger S, Schoch C. Conventional cytogenetics of myeloproliferative diseases other than CML contribute valid information. Ann Hematol. 2005;84(4):250–257.PubMedCrossRefGoogle Scholar
  10. 10.
    Bacher U, Haferlach T, Kern W, Haferlach C, Schnittger S. A comparative study of molecular mutations in 381 patients with myelodysplastic syndrome and in 4130 patients with acute myeloid leukemia. Haematologica. 2007;92(6):744–752.PubMedCrossRefGoogle Scholar
  11. 11.
    Fioretos T, Strombeck B, Sandberg T, et al. Isochromosome 17q in blast crisis of chronic myeloid leukemia and in other hematologic malignancies is the result of clustered breakpoints in 17p11 and is not associated with coding TP53 mutations. Blood. 1999;94(1):225–232.PubMedGoogle Scholar
  12. 12.
    Djordjevic V, Jankovic G, Suvajdzic N, et al. A der(14)t(1;14)(q12;p11) in chronic myelomonocytic leukemia. Cancer Genet Cytogenet. 2005;160(1):89–93.PubMedCrossRefGoogle Scholar
  13. 13.
    McClure RF, Dewald GW, Hoyer JD, Hanson CA. Isolated isochromosome 17q: a distinct type of mixed myeloproliferative disorder/myelodysplastic syndrome with an aggressive clinical course. Br J Haematol. 1999;106(2):445–454.PubMedCrossRefGoogle Scholar
  14. 14.
    Wang SA, Galili N, Cerny J, et al. Chronic myelomonocytic leukemia evolving from preexisting myelodysplasia shares many features with de novo disease. Am J Clin Pathol. 2006;126(5):789–797.PubMedCrossRefGoogle Scholar
  15. 15.
    Rowley JD, Reshmi S, Sobulo O, et al. All patients with the T(11;16)(q23;p13.3) that involves MLL and CBP have treatment-related hematologic disorders. Blood. 1997;90(2):535–541.PubMedGoogle Scholar
  16. 16.
    Roumier C, Daudignon A, Soenen V, et al. p190 bcr-abl rearrangement: a secondary cytogenetic event in some chronic myeloid disorders? Haematologica. 1999;84(12):1075–1080.PubMedGoogle Scholar
  17. 17.
    Melo JV, Myint H, Galton DA, Goldman JM. P190BCR–ABL chronic myeloid leukaemia: the missing link with chronic myelomonocytic leukaemia? Leukemia. 1994;8(1):208–211.PubMedGoogle Scholar
  18. 18.
    Steensma DP, Dewald GW, Lasho TL, et al. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both “atypical” myeloproliferative disorders and myelodysplastic syndromes. Blood. 2005;106(4):1207–1209.PubMedCrossRefGoogle Scholar
  19. 19.
    Becher R, Carbonell F, Bartram CR. Isochromosome 17q in Ph1-negative leukemia: a clinical, cytogenetic, and molecular study. Blood. 1990;75(8):1679–1683.PubMedGoogle Scholar
  20. 20.
    Johan MF, Goodeve AC, Bowen DT, Frew ME, Reilly JT. JAK2 V617F Mutation is uncommon in chronic myelomonocytic leukaemia. Br J Haematol. 2005;130(6):968.PubMedCrossRefGoogle Scholar
  21. 21.
    Jelinek J, Oki Y, Gharibyan V, et al. JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia. Blood. 2005;106(10):3370–3373.PubMedCrossRefGoogle Scholar
  22. 22.
    Levine RL, Loriaux M, Huntly BJ, et al. The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood. 2005;106(10):3377–3379.PubMedCrossRefGoogle Scholar
  23. 23.
    Padua RA, Carter G, Hughes D, et al. RAS mutations in myelodysplasia detected by amplification, oligonucleotide hybridization, and transformation. Leukemia. 1988;2(8):503–510.PubMedGoogle Scholar
  24. 24.
    Bos JL. Ras oncogenes in human cancer: a review. Cancer Res. 1989;49(17):4682–4689.PubMedGoogle Scholar
  25. 25.
    Gow J, Hughes D, Farr C, et al. Activation of Ha-ras in human chronic granulocytic and chronic myelomonocytic leukaemia. Leuk Res. 1988;12(10):805–810.PubMedCrossRefGoogle Scholar
  26. 26.
    Parikh C, Subrahmanyam R, Ren R. Oncogenic NRAS rapidly and efficiently induces CMML- and AML-like diseases in mice. Blood. 2006;108(7):2349–2357.PubMedCrossRefGoogle Scholar
  27. 27.
    Braun BS, Tuveson DA, Kong N, et al. Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc Natl Acad Sci USA. 2004;101(2):597–602.PubMedCrossRefGoogle Scholar
  28. 28.
    Cortes J, Giles F, O’Brien S, et al. Results of imatinib mesylate therapy in patients with refractory or recurrent acute myeloid leukemia, high-risk myelodysplastic syndrome, and myeloproliferative disorders. Cancer. 2003;97(11):2760–2766.PubMedCrossRefGoogle Scholar
  29. 29.
    Brizard A, Huret JL, Lamotte F, et al. Three cases of myelodysplastic-myeloproliferative disorder with abnormal chromatin clumping in granulocytes. Br J Haematol. 1989;72(2):294–295.PubMedCrossRefGoogle Scholar
  30. 30.
    Onida F, Ball G, Kantarjian HM, et al. Characteristics and outcome of patients with Philadelphia chromosome negative, bcr/abl negative chronic myelogenous leukemia. Cancer. 2002;95(8):1673–1684.PubMedCrossRefGoogle Scholar
  31. 31.
    Breccia M, Biondo F, Latagliata R, Carmosino I, Mandelli F, Alimena G. Identification of risk factors in atypical chronic myeloid leukemia. Haematologica. 2006;91(11):1566–1568.PubMedGoogle Scholar
  32. 32.
    Hernandez JM, del Canizo MC, Cuneo A, et al. Clinical, hematological and cytogenetic characteristics of atypical chronic myeloid leukemia. Ann Oncol. 2000;11(4):441–444.PubMedCrossRefGoogle Scholar
  33. 33.
    Reiter A, Walz C, Watmore A, et al. The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2. Cancer Res. 2005;65(7):2662–2667.PubMedCrossRefGoogle Scholar
  34. 34.
    Bousquet M, Quelen C, De Mas V, et al. The t(8;9)(p22;p24) translocation in atypical chronic myeloid leukaemia yields a new PCM1–JAK2 fusion gene. Oncogene. 2005;24(48):7248–7252.PubMedCrossRefGoogle Scholar
  35. 35.
    Lane SW, Fairbairn DJ, McCarthy C, Nandini A, Perry-Keene J, Kennedy GA. Leukaemia cutis in atypical chronic myeloid leukaemia with a t(9;22) (p24;q11.2) leading to BCR–JAK2 fusion. Br J Haematol. 2008;142(4):503.PubMedCrossRefGoogle Scholar
  36. 36.
    Griesinger F, Hennig H, Hillmer F, et al. A BCR–JAK2 fusion gene as the result of a t(9;22)(p24;q11.2) translocation in a patient with a clinically typical chronic myeloid leukemia. Genes Chromosomes Cancer. 2005;44(3):329–333.PubMedCrossRefGoogle Scholar
  37. 37.
    Fend F, Horn T, Koch I, Vela T, Orazi A. Atypical chronic myeloid leukemia as defined in the WHO classification is a JAK2 V617F negative neoplasm. Leuk Res. 2008;32(12):1931–1935.PubMedCrossRefGoogle Scholar
  38. 38.
    Hasle H, Niemeyer CM, Chessells JM, et al. A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases. Leukemia. 2003;17(2):277–282.PubMedCrossRefGoogle Scholar
  39. 39.
    Niemeyer CM, Arico M, Basso G, et al. Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. European Working Group on Myelodysplastic Syndromes in Childhood (EWOG–MDS). Blood. 1997;89(10):3534–3543.PubMedGoogle Scholar
  40. 40.
    Hasle H, Baumann I, Bergstrasser E, et al. The International Prognostic Scoring System (IPSS) for childhood myelodysplastic syndrome (MDS) and juvenile myelomonocytic leukemia (JMML). Leukemia. 2004;18(12):2008–2014.PubMedCrossRefGoogle Scholar
  41. 41.
    Passmore SJ, Hann IM, Stiller CA, et al. Pediatric myelodysplasia: a study of 68 children and a new prognostic scoring system. Blood. 1995;85(7):1742–1750.PubMedGoogle Scholar
  42. 42.
    Niemeyer CM, Kratz CP. Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia: molecular classification and treatment options. Br J Haematol. 2008;140(6):610–624.PubMedCrossRefGoogle Scholar
  43. 43.
    Flotho C, Valcamonica S, Mach-Pascual S, et al. RAS mutations and clonality analysis in children with juvenile myelomonocytic leukemia (JMML). Leukemia. 1999;13(1):32–37.PubMedCrossRefGoogle Scholar
  44. 44.
    Tartaglia M, Niemeyer CM, Fragale A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet. 2003;34(2):148–150.PubMedCrossRefGoogle Scholar
  45. 45.
    Side LE, Emanuel PD, Taylor B, et al. Mutations of the NF1 gene in children with juvenile myelomonocytic leukemia without clinical evidence of neurofibromatosis, type 1. Blood. 1998;92(1):267–272.PubMedGoogle Scholar
  46. 46.
    de Vries AC, Stam RW, Kratz CP, Zenker M, Niemeyer CM, van den Heuvel-Eibrink MM. Mutation analysis of the BRAF oncogene in juvenile myelomonocytic leukemia. Haematologica. 2007;92(11):1574–1575.PubMedCrossRefGoogle Scholar
  47. 47.
    Freeburn RW, Gale RE, Wagner HM, Linch DC. Analysis of the coding sequence for the GM-CSF receptor alpha and beta chains in patients with juvenile chronic myeloid leukemia (JCML). Exp Hematol. 1997;25(4):306–311.PubMedGoogle Scholar
  48. 48.
    Koike K, Matsuda K. Recent advances in the pathogenesis and management of juvenile myelomonocytic leukaemia. Br J Haematol. 2008;141(5):567–575.PubMedCrossRefGoogle Scholar
  49. 49.
    Hasegawa D, Manabe A, Kubota T, et al. Methylation status of the p15 and p16 genes in paediatric myelodysplastic syndrome and juvenile myelomonocytic leukaemia. Br J Haematol. 2005;128(6):805–812.PubMedCrossRefGoogle Scholar
  50. 50.
    Gratias EJ, Liu YL, Meleth S, Castleberry RP, Emanuel PD. Activating FLT3 mutations are rare in children with juvenile myelomonocytic leukemia. Pediatr Blood Cancer. 2005;44(2):142–146.PubMedCrossRefGoogle Scholar
  51. 51.
    de Vries AC, Stam RW, Schneider P, et al. Role of mutation independent constitutive activation of FLT3 in juvenile myelomonocytic leukemia. Haematologica. 2007;92(11):1557–1560.PubMedCrossRefGoogle Scholar
  52. 52.
    Lau RC, Squire J, Brisson L, et al. Lymphoid blast crisis of B-lineage phenotype with monosomy 7 in a patient with juvenile chronic myelogenous leukemia (JCML). Leukemia. 1994;8(5):903–908.PubMedGoogle Scholar
  53. 53.
    Matsuda K, Shimada A, Yoshida N, et al. Spontaneous improvement of hematologic abnormalities in patients having juvenile myelomonocytic leukemia with specific RAS mutations. Blood. 2007;109(12):5477–5480.PubMedCrossRefGoogle Scholar
  54. 54.
    Nakamura Y, Ito M, Yamamoto T, et al. Engraftment of NOD/SCID/gammac(null) mice with multilineage neoplastic cells from patients with juvenile myelomonocytic leukaemia. Br J Haematol. 2005;130(1):51–57.PubMedCrossRefGoogle Scholar
  55. 55.
    Flotho C, Steinemann D, Mullighan CG, et al. Genome-wide single-nucleotide polymorphism analysis in juvenile myelomonocytic leukemia identifies uniparental disomy surrounding the NF1 locus in cases associated with neurofibromatosis but not in cases with mutant RAS or PTPN11. Oncogene. 2007;26(39):5816–5821.PubMedCrossRefGoogle Scholar
  56. 56.
    Kratz CP, Niemeyer CM, Castleberry RP, et al. The mutational spectrum of PTPN11 in juvenile myelomonocytic leukemia and Noonan syndrome/myeloproliferative disease. Blood. 2005;106(6):2183–2185.PubMedCrossRefGoogle Scholar
  57. 57.
    Gattermann N, Billiet J, Kronenwett R, et al. High frequency of the JAK2 V617F mutation in patients with thrombocytosis (platelet count > 600 × 109/L) and ringed sideroblasts more than 15% considered as MDS/MPD, unclassifiable. Blood. 2007;109(3):1334–1335.PubMedCrossRefGoogle Scholar
  58. 58.
    Steensma DP, Caudill JS, Pardanani A, McClure RF, Lasho TL, Tefferi A. MPL W515 and JAK2 V617 mutation analysis in patients with refractory anemia with ringed sideroblasts and an elevated platelet count. Haematologica. 2006;91(12 suppl):ECR57.PubMedGoogle Scholar
  59. 59.
    Szpurka H, Tiu R, Murugesan G, et al. Refractory anemia with ringed sideroblasts associated with marked thrombocytosis (RARS-T), another myeloproliferative condition characterized by JAK2 V617F mutation. Blood. 2006;108(7):2173–2181.PubMedCrossRefGoogle Scholar
  60. 60.
    Wang SA, Hasserjian RP, Loew JM, et al. Refractory anemia with ringed sideroblasts associated with marked thrombocytosis harbors JAK2 mutation and shows overlapping myeloproliferative and myelodysplastic features. Leukemia. 2006;20(9):1641–1644.PubMedCrossRefGoogle Scholar
  61. 61.
    Boissinot M, Garand R, Hamidou M, Hermouet S. The JAK2-V617F mutation and essential thrombocythemia features in a subset of patients with refractory anemia with ring sideroblasts (RARS). Blood. 2006;108(5):1781–1782.PubMedCrossRefGoogle Scholar
  62. 62.
    Remacha AF, Nomdedeu JF, Puget G, et al. Occurrence of the JAK2 V617F mutation in the WHO provisional entity: myelodysplastic/myeloproliferative disease, unclassifiable-refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Haematologica. 2006;91(5):719–720.PubMedGoogle Scholar
  63. 63.
    Schmitt-Graeff AH, Teo SS, Olschewski M, et al. JAK2V617F mutation status identifies subtypes of refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Haematologica. 2008;93(1):34–40.PubMedCrossRefGoogle Scholar
  64. 64.
    Aboudola S, Murugesan G, Szpurka H, et al. Bone marrow phospho-STAT5 expression in non-CML chronic myeloproliferative disorders correlates with JAK2 V617F mutation and provides evidence of in vivo JAK2 activation. Am J Surg Pathol. 2007;31(2):233–239.PubMedCrossRefGoogle Scholar
  65. 65.
    Soupir CP, Vergilio J, Wang SA, Freeman J, Fend F, Hasserjian RP. JAK2 V617F mutation defines two subsets of refractory anemia with ringed sideroblasts and marked thrombocyotosis (RARS-T) with distinctive clinical and morphologic features. In: Modern Pathology USCAP 97th Annual Conference. Denver, Colorado, USA: Nature Publishing Group; 2008.Google Scholar
  66. 66.
    Cannizzo E, Carulli G, Azzara A, Galimberti S, Zucca A, Petrini M. JAK-2V617F mutation in RARS-t: a target for Imatinib therapy? Leuk Res. 2008;32(10):1636–1637.PubMedCrossRefGoogle Scholar
  67. 67.
    Ingram W, Lea NC, Cervera J, et al. The JAK2 V617F mutation identifies a subgroup of MDS patients with isolated deletion 5q and a proliferative bone marrow. Leukemia. 2006;20(7):1319–1321.PubMedCrossRefGoogle Scholar
  68. 68.
    Metzgeroth G, Walz C, Score J, et al. Recurrent finding of the FIP1L1–PDGFRA fusion gene in eosinophilia-associated acute myeloid leukemia and lymphoblastic T-cell lymphoma. Leukemia. 2007;21(6):1183–1188.PubMedCrossRefGoogle Scholar
  69. 69.
    Pardanani A, Brockman SR, Paternoster SF, et al. FIP1L1–PDGFRA fusion: prevalence and clinicopathologic correlates in 89 consecutive patients with moderate to severe eosinophilia. Blood. 2004;104(10):3038–3045.PubMedCrossRefGoogle Scholar
  70. 70.
    Cools J, DeAngelo DJ, Gotlib J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med. 2003;348(13):1201–1214.PubMedCrossRefGoogle Scholar
  71. 71.
    Cools J, Stover EH, Boulton CL, et al. PKC412 overcomes resistance to imatinib in a murine model of FIP1L1–PDGFRalpha-induced myeloproliferative disease. Cancer Cell. 2003;3(5):459–469.PubMedCrossRefGoogle Scholar
  72. 72.
    Robyn J, Lemery S, McCoy JP, et al. Multilineage involvement of the fusion gene in patients with FIP1L1/PDGFRA-positive hypereosinophilic syndrome. Br J Haematol. 2006;132(3):286–292.PubMedCrossRefGoogle Scholar
  73. 73.
    Curtis CE, Grand FH, Musto P, et al. Two novel imatinib-responsive PDGFRA fusion genes in chronic eosinophilic leukaemia. Br J Haematol. 2007;138(1):77–81.PubMedCrossRefGoogle Scholar
  74. 74.
    Score J, Curtis C, Waghorn K, et al. Identification of a novel imatinib responsive KIF5B–PDGFRA fusion gene following screening for PDGFRA overexpression in patients with hypereosinophilia. Leukemia. 2006;20(5):827–832.PubMedCrossRefGoogle Scholar
  75. 75.
    Walz C, Curtis C, Schnittger S, et al. Transient response to imatinib in a chronic eosinophilic leukemia associated with ins(9;4)(q33;q12q25) and a CDK5RAP2–PDGFRA fusion gene. Genes Chromosomes Cancer. 2006;45(10):950–956.PubMedCrossRefGoogle Scholar
  76. 76.
    Safley AM, Sebastian S, Collins TS, et al. Molecular and cytogenetic characterization of a novel translocation t(4;22) involving the breakpoint cluster region and platelet-derived growth factor receptor-alpha genes in a patient with atypical chronic myeloid leukemia. Genes Chromosomes Cancer. 2004;40(1):44–50.PubMedCrossRefGoogle Scholar
  77. 77.
    Baxter EJ, Hochhaus A, Bolufer P, et al. The t(4;22)(q12;q11) in atypical chronic myeloid leukaemia fuses BCR to PDGFRA. Hum Mol Genet. 2002;11(12):1391–1397.PubMedCrossRefGoogle Scholar
  78. 78.
    Lierman E, Folens C, Stover EH, et al. Sorafenib is a potent inhibitor of FIP1L1–PDGFRalpha and the imatinib-resistant FIP1L1–PDGFRalpha T674I mutant. Blood. 2006;108(4):1374–1376.PubMedCrossRefGoogle Scholar
  79. 79.
    Dalal BI, Horsman DE, Bruyere H, Forrest DL. Imatinib mesylate responsiveness in aggressive systemic mastocytosis: novel association with a platelet derived growth factor receptor beta mutation. Am J Hematol. 2007;82(1):77–79.PubMedCrossRefGoogle Scholar
  80. 80.
    Walz C, Metzgeroth G, Haferlach C, et al. Characterization of three new imatinib-responsive fusion genes in chronic myeloproliferative disorders generated by disruption of the platelet-derived growth factor receptor beta gene. Haematologica. 2007;92(2):163–169.PubMedCrossRefGoogle Scholar
  81. 81.
    Golub TR, Barker GF, Lovett M, Gilliland DG. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell. 1994;77(2):307–316.PubMedCrossRefGoogle Scholar
  82. 82.
    Bain BJ, Fletcher SH. Chronic eosinophilic leukemias and the myeloproliferative variant of the hypereosinophilic syndrome. Immunol Allergy Clin North Am. 2007;27(3):377–388.PubMedCrossRefGoogle Scholar
  83. 83.
    Steer EJ, Cross NC. Myeloproliferative disorders with translocations of chromosome 5q31–35: role of the platelet-derived growth factor receptor Beta. Acta Haematol. 2002;107(2):113–122.PubMedCrossRefGoogle Scholar
  84. 84.
    Cools J, Mentens N, Odero MD, et al. Evidence for position effects as a variant ETV6-mediated leukemogenic mechanism in myeloid leukemias with a t(4;12)(q11–q12;p13) or t(5;12)(q31;p13). Blood. 2002;99(5):1776–1784.PubMedCrossRefGoogle Scholar
  85. 85.
    Curtis CE, Grand FH, Waghorn K, Sahoo TP, George J, Cross NC. A novel ETV6–PDGFRB fusion transcript missed by standard screening in a patient with an imatinib responsive chronic myeloproliferative disease. Leukemia. 2007;21(8):1839–1841.PubMedCrossRefGoogle Scholar
  86. 86.
    Macdonald D, Reiter A, Cross NC. The 8p11 myeloproliferative syndrome: a distinct clinical entity caused by constitutive activation of FGFR1. Acta Haematol. 2002;107(2):101–107.PubMedCrossRefGoogle Scholar
  87. 87.
    Popovici C, Zhang B, Gregoire MJ, et al. The t(6;8)(q27;p11) translocation in a stem cell myeloproliferative disorder fuses a novel gene, FOP, to fibroblast growth factor receptor 1. Blood. 1999;93(4):1381–1389.PubMedGoogle Scholar
  88. 88.
    Roumiantsev S, Krause DS, Neumann CA, et al. Distinct stem cell myeloproliferative/T lymphoma syndromes induced by ZNF198–FGFR1 and BCR–FGFR1 fusion genes from 8p11 translocations. Cancer Cell. 2004;5(3):287–298.PubMedCrossRefGoogle Scholar
  89. 89.
    Xiao S, McCarthy JG, Aster JC, Fletcher JA. ZNF198–FGFR1 transforming activity depends on a novel proline-rich ZNF198 oligomerization domain. Blood. 2000;96(2):699–704.PubMedGoogle Scholar
  90. 90.
    Chen J, Deangelo DJ, Kutok JL, et al. PKC412 inhibits the zinc finger 198-fibroblast growth factor receptor 1 fusion tyrosine kinase and is active in treatment of stem cell myeloproliferative disorder. Proc Natl Acad Sci USA. 2004;101(40):14479–14484.PubMedCrossRefGoogle Scholar
  91. 91.
    Vizmanos JL, Hernandez R, Vidal MJ, et al. Clinical variability of patients with the t(6;8)(q27;p12) and FGFR10P–FGFR1 fusion: two further cases. Hematol J. 2004;5(6):534–537.PubMedCrossRefGoogle Scholar
  92. 92.
    Dong S, Kang S, Gu TL, et al. 14-3-3 Integrates prosurvival signals mediated by the AKT and MAPK pathways in ZNF198–FGFR1-transformed hematopoietic cells. Blood. 2007;110(1):360–369.PubMedCrossRefGoogle Scholar
  93. 93.
    Nagata H, Worobec AS, Oh CK, et al. Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc Natl Acad Sci USA. 1995;92(23):10560–10564.PubMedCrossRefGoogle Scholar
  94. 94.
    Longley BJ Jr, Metcalfe DD, Tharp M, et al. Activating and dominant inactivating c-KIT catalytic domain mutations in distinct clinical forms of human mastocytosis. Proc Natl Acad Sci USA. 1999;96(4):1609–1614.PubMedCrossRefGoogle Scholar
  95. 95.
    Ashman LK, Cambareri AC, To LB, Levinsky RJ, Juttner CA. Expression of the YB5.B8 antigen (c-kit proto-oncogene product) in normal human bone marrow. Blood. 1991;78(1):30–37.PubMedGoogle Scholar
  96. 96.
    Gotlib J, Berube C, Growney JD, et al. Activity of the tyrosine kinase inhibitor PKC412 in a patient with mast cell leukemia with the D816V KIT mutation. Blood. 2005;106(8):2865–2870.PubMedCrossRefGoogle Scholar
  97. 97.
    Horny HP, Sotlar K, Sperr WR, Valent P. Systemic mastocytosis with associated clonal haematological non-mast cell lineage diseases: a histopathological challenge. J Clin Pathol. 2004;57(6):604–608.PubMedCrossRefGoogle Scholar
  98. 98.
    Horny HP, Bennett JM, Bain BJ, Akin C, Escribano L, Valeny P. Mastocytosis. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, et al., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC; 2008:54–63.Google Scholar
  99. 99.
    Pardanani A, Reeder T, Li CY, Tefferi A. Eosinophils are derived from the neoplastic clone in patients with systemic mastocytosis and eosinophilia. Leuk Res. 2003;27(10):883–885.PubMedCrossRefGoogle Scholar
  100. 100.
    Maric I, Robyn J, Metcalfe DD, et al. KIT D816V-associated systemic mastocytosis with eosinophilia and FIP1L1/PDGFRA-associated chronic eosinophilic leukemia are distinct entities. J Allergy Clin Immunol. 2007;120(3):680–687.PubMedCrossRefGoogle Scholar
  101. 101.
    Valent P, Horny HP, Escribano L, et al. Diagnostic criteria and classification of mastocytosis: a consensus proposal. Leuk Res. 2001;25(7):603–625.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Robert P. Hasserjian
    • 1
  1. 1.Department of PathologyHarvard Medical School/Massachusetts General HospitalBostonUSA

Personalised recommendations