Molecular Pathogenesis of Nonchronic Myeloid Leukemia Myeloproliferative Neoplasms

  • Mike Perez
  • Chung-Che (Jeff) Chang
Part of the Molecular Pathology Library book series (MPLB, volume 4)


Nonchronic myeloid leukemia (CML) myeloproliferative neoplasms (MPNs), referred to as BCR/ABL1-negative MPNs, have classically been categorized as polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). Each of these MPNs represents a multipotent hematopoietic stem cell-derived clonal myeloproliferation of one or more of the myeloid lineages with the variably common features of erythrocytosis, granulocytosis, and/or thrombocytosis in peripheral blood (PB) and/or variable bone marrow (BM) fibrosis. It is generally a disease of older individuals; however, ET and PMF have been reported in children. Other than the mentioned clinical characteristics of the PB, this category of disease also possesses a tendency toward organomegaly (i.e., hepatosplenomegaly), thrombosis, and bleeding. The BM is usually hypercellular with a blast count of <10%. Although these diseases are heterogeneous, they are characterized by increased blood cell production related to cytokine hypersensitivity, virtually normal cell maturation, and progressive evolution to BM failure with an end point of fibrosis or leukemia.


Acute Myeloid Leukemia Polycythemia Vera Essential Thrombocythemia Cytogenetic Abnormality Systemic Mastocytosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jaffe ES, World Health Organization. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Myeloproliferative Neoplasms. 4th ed. Lyon/Oxford: IARC Press/Oxford University Press; 2008.Google Scholar
  2. 2.
    Jelinek J, Oki Y, Gharibyan V, et al. JAK2 mutation 1849G>T is rare in leukemia but can be found in CMML, Phildadelphia chromosome-negative CML, and megakaryocytic leukemia. Blood. 2005;106:3370–3373.CrossRefPubMedGoogle Scholar
  3. 3.
    Jones AV, Kreil S, Zoi K, et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood. 2005;106:2162–2168.CrossRefPubMedGoogle Scholar
  4. 4.
    Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–1790.CrossRefPubMedGoogle Scholar
  5. 5.
    Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–397.CrossRefPubMedGoogle Scholar
  6. 6.
    Tefferi A, Lasho TL, Gilliland G. JAK2 mutations in myeloproliferative disorders. N Engl J Med. 2005;353:1416–1417.CrossRefPubMedGoogle Scholar
  7. 7.
    Adamson JW, Fialkow PJ, Murhpy S, Prchal JF, Steinmann L. Polycythemia vera: stem-cell and probable clonal origin of the disease. N Engl J Med. 1976;295:913–916.CrossRefPubMedGoogle Scholar
  8. 8.
    Fialkow PJ, Faguet GB, Jacobson RJ, Vaidya K, Murphy S. Evidence that essential thrombocythemia is a clonal disorder with origin in multipotent stem cell. Blood. 1981;58:916–918.PubMedGoogle Scholar
  9. 9.
    El Kassar N, Hetet G, Briere J, Grandchamp B. Clonality analysis of hematopoiesis in essential thrombocythemia: advantages of studying T lymphocytes and platelets. Blood. 1997;89:128–134.PubMedGoogle Scholar
  10. 10.
    Anger B, Janssen JW, Schrezenmeier H, Hehlmann R, Heimpel H, Bartman CR. Clonal analysis of chronic myeloproliferative disorders using X-linked DNA polymorphisms. Leukemia. 1990;4:258–261.PubMedGoogle Scholar
  11. 11.
    Kreipe H, Jaquet K, Felgner J, Radzun HJ. Clonal granulocytes and bone marrow cells in the cellular phase of agnogenic myeloid metaplasia. Blood. 1991;78:1814–1817.PubMedGoogle Scholar
  12. 12.
    Chen GL, Prchal JT. X-linked clonality testing: interpretation and limitations. Blood. 2007;110:1411–1419.CrossRefPubMedGoogle Scholar
  13. 13.
    Liu Y, Phelan J, Go RC, Prchal JF, Prchal JT. Rapid determination of clonality by detection of two closely-linked X chromosome exonic polymorphisms using allele-specific PCR. J Clin Invest. 1997;99:1984–1990.CrossRefPubMedGoogle Scholar
  14. 14.
    Kravolics R, Teo SS, Li S, et al. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood. 2006;108:1377–1380.CrossRefGoogle Scholar
  15. 15.
    Levine RL, Belisle C, Wadleigh M, et al. X-activation-based clonality analysis and quantitative JAK2V617F assessment reveal a strong association between clonality and JAK2V617F in PV but not ET/MMM, and identifies a subset of JAK2V617F-negative ET and MMM patient switch clonal hematopoiesis. Blood. 2006;107:4139–4141.CrossRefPubMedGoogle Scholar
  16. 16.
    Bench AJ, Cross NC, Huntly BJ, Nacheva EO, Geen AR. Myeloproliferative disorders. Best Pract Res Clin Haematol. 2001;14:531–551.CrossRefPubMedGoogle Scholar
  17. 17.
    Reilly JT, Snowden JA, Spearing RL, et al. Cytogenetic abnormalities and their prognostic significance in idiopathic myelofibrosis: a study of 106 cases. Br J Haematol. 1997;98:96–102.CrossRefPubMedGoogle Scholar
  18. 18.
    Dupriez B, Morel P, Demory JL, et al. Prognostic factors in agnogenic myeloid metaplasia: a report on 195 cases with a new scoring system. Blood. 1996;88:1013–1018.PubMedGoogle Scholar
  19. 19.
    Le Blanc K, Andersson P, Samuelsson J. Marked heterogeneity in protein levels and functional integrity of the thrombopoietin receptor c-mpl in polycythaemia vera. Br J Haematol. 2000;108:80–85.CrossRefPubMedGoogle Scholar
  20. 20.
    Dingli D, Grand FH, Mahaffey V, et al. Der(6)t(1;6)(q21-23;p21.3): a specific cytogenetic abnormality in myelofibrosis with myeloid metaplasia. Br J Haematol. 2005;130:229–232.CrossRefPubMedGoogle Scholar
  21. 21.
    Reilly JT. Cytogenetic and molecular genetic abnormalities in agnogenic myeloid metaplasia. Semin Oncol. 2005;32:359–364.CrossRefPubMedGoogle Scholar
  22. 22.
    Bacher U, Haferlach T, Kern W, Hiddemann W, Schnittger S, Schoch C. Conventional cytogenetic so myeloproliferative disorders other than CML contribute valid information. Ann Hematol. 2005;84:250–257.CrossRefPubMedGoogle Scholar
  23. 23.
    Bench AJ, Nacheva EP, Champion KM, Green AR. Molecular genetics and cytogenetic of myeloproliferative disorders. Baillieres Clin Haematol. 1998;11:819–848.CrossRefPubMedGoogle Scholar
  24. 24.
    Sessarego M, Defferrari R, Dejana AM, et al. Cytogenetic analysis in essential thrombocythemia at diagnosis and at transformation: a 12-year study. Cancer Genet Cytogenet. 1998;43:57–65.CrossRefGoogle Scholar
  25. 25.
    Tefferi A, Mesa RA, Schroeder G, Hanson CA, Li CY, Dewald GW. Cytogenetic findings and their clinical relevance in myelofibrosis with myeloid metaplasia. Br J Haematol. 2001;113:763–771.CrossRefPubMedGoogle Scholar
  26. 26.
    Haferlach T, Bacher U, Wolfgang K, Schnittger S, Haferlach C. The diagnosis of BCR/ABL-negative chronic myeloproliferative diseases (CMPD): a comprehensive approach based on morphology, cytogenetics, and molecular markers. Ann Hematol. 2008;87:1–10.CrossRefPubMedGoogle Scholar
  27. 27.
    Reilly JT. Pathogenetic insight and prognostic information from standard and molecular cytogenetic studies in BCR-ABL negative meyloproliferative neoplasms (MPN). Leukemia. 2008;22:1818–1827.CrossRefPubMedGoogle Scholar
  28. 28.
    Al-Assar O, Ul-Hassan A, Brown R, Wilson GA, Hammond DW, Reilly JT. Gains on 9p are common genomic aberrations in idiopathic myelofibrosis: a comparative genomic hybridization study. Br J Haematol. 2005;129:66–71.CrossRefPubMedGoogle Scholar
  29. 29.
    Diez-Martin JL, Graham DL, Petitt RM, Dewald GW. Chromosome studies in 104 patients with polycythemia vera. Mayo Clin Proc. 1991;66:287–299.PubMedGoogle Scholar
  30. 30.
    Bench AJ, Pahl HL. Chromosomal abnormalities and molecular markers in myeloproliferative disorders. Semin Hematol. 2005;42:196–205.CrossRefPubMedGoogle Scholar
  31. 31.
    Najfeld V, Montella L, Scalise A, Fruchtman S. Exploring polycythaemia vera with fluorescence in situ hybridization: additional cryptic 9p is the most frequent abnormality detected. Br J Haematol. 2002;119:558–566.CrossRefPubMedGoogle Scholar
  32. 32.
    Gribble SM, Reid AG, Bench AJ, et al. Molecular cytogenetics of polycythaemia vera: lack of occult rearrangements detectable by 20q LSP screening, CGH, and M-FISH. Leukemia. 2003;17:1419–1421.CrossRefPubMedGoogle Scholar
  33. 33.
    Busson M, Romana S, Nguyen Khac F, Bernard O, Berger R. Cryptic translocations involving chromosome 20 in polycythemia vera. Ann Genet. 2004;47:365–371.PubMedGoogle Scholar
  34. 34.
    Zamora L, Espinet B, Florensa L, et al. Is fluorescence in situ hybridization a useful method in diagnosis of polycythemia vera patients? Cancer Genet Cytogenet. 2004;151:139–145.CrossRefPubMedGoogle Scholar
  35. 35.
    Westwood NB, Gruszka-Westwood AM, Atkinson S, Pearson TC. Polycythemia vera: analysis of DNA from blood granulocytes using comparative genomic hybridization. Haematologica. 2001;86(5):464–469.PubMedGoogle Scholar
  36. 36.
    Cao M, Olsen R, Zu Y. Polycythemia vera: new clinicopathologic perspectives. Arch Pathol Lab Med. 2006;130:1126–1132.PubMedGoogle Scholar
  37. 37.
    Espinet B, Puigdecanet E, Florensa L, et al. Array comparative genomic hybridization reveals an absence of recurrent genomic copy number changes in essential thrombocythemia. Haematologica. 2006;91(s1):37. abstract 0098.Google Scholar
  38. 38.
    Borze I, Mustjoki S, Juvonen E, Knuutila S. Oligoarray comparative genomic hybridization in polycythemia vera and essential thrombocythemia. Haematologica. 2008;93(7):1098–1099.CrossRefPubMedGoogle Scholar
  39. 39.
    Herishanu Y, Lishner M, Bomstein Y, et al. Comparative genomic hybridization in polycythemia vera and essential thrombocytosis patients. Cancer Genet Cytogenet. 2001;128:154–157.CrossRefPubMedGoogle Scholar
  40. 40.
    Elis A, Amiel A, Manor Y, Tangi I, Fejgin M, Lishner M. The detection of trisomies 8 and 9 in patients with essential thrombocytosis by fluorescence in situ hybridization. Cancer Genet Cytogenet. 1996;92:14–17.CrossRefPubMedGoogle Scholar
  41. 41.
    Case DC Jr. Absence of a specific chromosomal marker in essential thrombocythemia. Cancer Genet Cytogenet. 1984;12:163–165.CrossRefPubMedGoogle Scholar
  42. 42.
    Swolin B, Safai-Kutti S, Anghem E, Kutti J. No increased frequency of trisomies 8 and 9 by fluorescence in situ hybridization in untreated patients with essential thrombocythemia. Cancer Genet Cytogenet. 2001;126:56–59.CrossRefPubMedGoogle Scholar
  43. 43.
    Sterkers Y, Preudhomme C, Lai JL, et al. Acute myeloid leukemia and myelodysplastic syndromes following essential thrombocythemia treated with hydroxyurea: high proportion of cases with 17p deletion. Blood. 1998;91:616–622.PubMedGoogle Scholar
  44. 44.
    Lazarevic V, Tomin D, Jankovic GM, et al. A novel t(2;17) in transformation of essential thrombocythemia to acute myelocytic leukemia. Cancer Genet Cytogenet. 2004;148:77–79.CrossRefPubMedGoogle Scholar
  45. 45.
    Hayashi S, Iwama H, Uchida Y, et al. Essential thrombocythemia in transformation to acute leukemia (FAB-M0) as a natural history from myelofibrosis with t(1;7). Rinsho Ketsueki. 1997;38:445–447.PubMedGoogle Scholar
  46. 46.
    Hsiao HH, Ito Y, Sashida G, Ohyashiki JH, Ohyashiki K. De novo appearance of der(1;7)(q10;p10) is associated with leukemic transformation and unfavorable prognosis in essential thrombocythemia. Leuk Res. 2005;29:1247–1252.CrossRefPubMedGoogle Scholar
  47. 47.
    Bernasconi P, Boni M, Cavigliano PM, et al. Acute myeloid leukemia (AML) having evolved from essential thrombocythemia (ET): distinctive chromosome abnormalities in patients treated with pipobroman or hydroxyurea. Leukemia. 2002;16:2078–2083.CrossRefPubMedGoogle Scholar
  48. 48.
    Tabata M, Imagawa S, Tarumoto T, et al. Essential thrombocythemia transformed to acute myelogenous leukemia with t(3;17)(p24; q12), del(5)(q13q34) after treatment with carboquone and hydroxyurea. Jpn J Clin Oncol. 2000;30:310–312.CrossRefPubMedGoogle Scholar
  49. 49.
    Sanchez S, Ewton A. Essential thrombocythemia: a review in diagnostic and pathologic features. Arch Pathol Lab Med. 2006;130:1144–1150.PubMedGoogle Scholar
  50. 50.
    Kawamata N, Ogawa S, Yamamoto G, et al. Genetic profiling of myeloproliferative disorders by single-nucleotide polymorphism oligonucleotide microarray. Exp Hematol. 2008;36:1471–1479.CrossRefPubMedGoogle Scholar
  51. 51.
    Yamamoto G, Nannya Y, Kato M, et al. Highly sensitive method for genome wide detection of allelic composition in nonpaired, primary tumor specimens by use of affymetrix single-nucleotide-polymorphism genotyping microarrays. Am J Hum Genet. 2007;81(1):114–126.CrossRefPubMedGoogle Scholar
  52. 52.
    Gondek LP, Dunbar AJ, Szpurka H, McDevitt MA, Maciejewski JP. SNP array karyotyping allows for the detection of uniparental disomy and cryptic chromosomal abnormalities in MDS/MPD-U and MPD. PLoS One. 2007;11(e1225):1–9.Google Scholar
  53. 53.
    Tefferi A, Gilliland DG. Oncogenes in myeloproliferative disorders. Cell Cycle. 2007;6(5):550–566.PubMedGoogle Scholar
  54. 54.
    Tefferi A, Barbui T. bcr/abl-negative, classic myeloproliferative disorders: diagnosis and treatment. Mayo Clin Proc. 2005;80(9):1220–1232.CrossRefPubMedGoogle Scholar
  55. 55.
    James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–1148.CrossRefPubMedGoogle Scholar
  56. 56.
    Vainchenker W, Constantinescu SN. A unique activating mutation in JAK2 (V617F) is at the origin of polycythemia vera and allows a new classification of myeloproliferative diseases. Hematology. 2005:195–200.Google Scholar
  57. 57.
    Tefferi A, Pardanani A. Mutation screening for JAK2(V617F): when to order the test and how to interpret the results. Leuk Res. 2006;30(6):739–744.CrossRefPubMedGoogle Scholar
  58. 58.
    Nelson ME, Steensma DP. JAK2 V617F in myeloid disorders: what do we know now, and where are we headed? Leuk Lymphoma. 2006;47(2):177–194.CrossRefPubMedGoogle Scholar
  59. 59.
    Steensma DP, Dewald GW, Lasho TL, et al. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both “atypical” myeloproliferative disorders and myelodysplastic syndromes. Blood. 2005;106(4):1207–1209.CrossRefPubMedGoogle Scholar
  60. 60.
    Levine RL, Loriaux M, Huntly BJ, et al. The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood. 2005;106(10):3377–3379.CrossRefPubMedGoogle Scholar
  61. 61.
    Lee JW, Kim YG, Soung YH, et al. The JAK2 V617F mutation in de novo acute myelogenous leukemias. Oncogene. 2006;25(9):1434–1436.CrossRefPubMedGoogle Scholar
  62. 62.
    Lu X, Levine R, Tong W, et al. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc Natl Acad Sci USA. 2005;102(52):18962–18967.CrossRefPubMedGoogle Scholar
  63. 63.
    Aboudola S, Murugesan G, Szpurka H, et al. Bone marrow phospho-STAT5 expression in non-CML chronic myeloproliferative disorders correlates with JAK2 V617F mutation and provides evidence of in vivo JAK2 activation. Am J Surg Pathol. 2007;31(2):233–239.CrossRefPubMedGoogle Scholar
  64. 64.
    Tefferi A. Essential thrombocythemia: scientific advances and current practice. Curr Opin Hematol. 2006;13(2):93–98.CrossRefPubMedGoogle Scholar
  65. 65.
    Campbell PJ, Griesshammer M, Dohner K, et al. V617F mutation in JAK2 is associated with poorer survival in idiopathic myelofibrosis. Blood. 2006;107(5):2098–2100.CrossRefPubMedGoogle Scholar
  66. 66.
    Vannucchi AM, Antonioli E, Guglielmelli P, et al. Prospective identification of high-risk polycythemia vera patients based on JAK2V617F allele burden. Leukemia. 2007;21(9):1952–1959.CrossRefPubMedGoogle Scholar
  67. 67.
    Kroger N, Badbaran A, Holler E, et al. Monitoring of the JAK2-V617F mutation by highly sensitive quantitative real-time PCR after allogenic stem cell transplantation in patients with myelofibrosis. Blood. 2007;109:1316–1321.CrossRefPubMedGoogle Scholar
  68. 68.
    Scott LM, Tong W, Levine RL, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356:459–468.CrossRefPubMedGoogle Scholar
  69. 69.
    Levine RL, Gilliland DG. Myeloproliferative disorders. Blood. 2008;112(6):2190–2197.CrossRefPubMedGoogle Scholar
  70. 70.
    Pietra D, Li S, Brisci A, et al. Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. Blood. 2008;111(3):1686–1689.CrossRefPubMedGoogle Scholar
  71. 71.
    Williams DM, Kim AH, Rogers O, Spivak JL, Moliterno AR. Phenotypic variations and new mutations in JAK2 V617F-negative polycythemia vera, erythrocytosis, and idiopathic myelofibrosis. Exp Hematol. 2007;35(11):1641–1646.CrossRefPubMedGoogle Scholar
  72. 72.
    Mercher T, Wernig G, Moore SA, et al. JAK2T875N is a novel activation mutation that results in myeloproliferative disease with features of megakaryoblastic leukemia in a murine bone marrow transplantation model. Blood. 2006;108:2770–2779.CrossRefPubMedGoogle Scholar
  73. 73.
    Malinge S, Ben-Abdelali R, Settergran C, et al. Novel activating JAK2 mutation in a patient with Down syndrome and B cell precursor acute lymphoblastic leukemia. Blood. 2007;109:2202–2204.CrossRefPubMedGoogle Scholar
  74. 74.
    Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activation mutation in myelofibrosis with myeloid metaplasia. PLOS Med. 2006;3:e270.CrossRefPubMedGoogle Scholar
  75. 75.
    Pardanani AD, Levine RL, Lasho T, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood. 2006;108(10):3472–3476.CrossRefPubMedGoogle Scholar
  76. 76.
    Steensma DP, Caudill JS, Pardanani A, McClure RF, Lasho TL, Tefferi A. MPLW515 and JAK2V616 mutation analysis in patients with refractory anemia with ringed sideroblasts and an elevated platelet count. Heamatologica. 2006;91(12 suppl):ECR 57.Google Scholar
  77. 77.
    Schnittger S, Bacher U, Haferlach C, et al. Detection of an MPLW515 mutation in a case with features of both essential thrombocythemia and refractory anemia with ringed sideroblasts and thrombocytosis. Leukemia. 2008;22:453–455.CrossRefPubMedGoogle Scholar
  78. 78.
    Lasho TL, Pardanani A, McClure RF, et al. Concurrent MPL515 and JAK2V617F mutations in myelofibrosis: chronology of clonal emergence and changes in mutant allele burden over time. Br J Haematol. 2006;135:683–687.CrossRefPubMedGoogle Scholar
  79. 79.
    Guglielmelli P, Pancrazzi A, Bergamaschi G, et al. Aneaemia characterizes patients with myelofibrosis harbouring Mpl mutation. Br J Haematologica. 2007;137:244–247.CrossRefGoogle Scholar
  80. 80.
    Beer PA, Campolbell PJ, Scott LM, et al. MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood. 2008;112:141–149.CrossRefPubMedGoogle Scholar
  81. 81.
    Vannuchi AM, Antonioli E, Guglielmelli P, et al. Characteristics and clinical correlates of MPL 515W>L/K mutation in essential thrombocythemia. Blood. 2008;112:844–847.CrossRefGoogle Scholar
  82. 82.
    Schnittger S, Bacher U, Heferlach C, et al. Characterization of 35 new cases with four different MPLW515 mutations and essential thrombocytosis or primary myelofibrosis. Haematologica. 2009;94(1):141–144.CrossRefPubMedGoogle Scholar
  83. 83.
    Pardanani A, Lasho TL, Finke C, et al. Extending Jak2V617F and MplW515 mutation analysis to single hematopoietic colonies and B and T lymphocytes. Stem Cells. 2007;25:2358–2362.CrossRefPubMedGoogle Scholar
  84. 84.
    Pellagati A, Vetrie D, Langford CF, et al. Gene expression profiling in polycythemia vera using cDNA microarray technology. Cancer Res. 2003;63:3940–3944.Google Scholar
  85. 85.
    Goerttler PS, Kreutz C, Donauer J, et al. Gene expression profiling in polycythaemia vera: over expression of transcription factor NF-E2. Br J Haematol. 2005;129:138–150.CrossRefPubMedGoogle Scholar
  86. 86.
    Schwemmers S, Will B, Waller CF, et al. JAK2V617F-negative ET patients do not display constitutively active JAK/STAT signaling. Exp Hematol. 2007;35:1695–1703.CrossRefPubMedGoogle Scholar
  87. 87.
    Puigdecanet E, Espinet B, Lozano JJ, et al. Gene expression profiling distinguishes JAK2V617F-negative from JAK2V617-positive patients in essential thrombocythemia. Leukemia. 2008;22:1368–1376.CrossRefPubMedGoogle Scholar
  88. 88.
    Catani L, Zini R, Sollazzo D, et al. Molecular profile of CD34+ stem/progenitor cells according to JAK2V617F mutation status in essential thrombocythemia. Leukemia. 2009;23:997–1000.CrossRefPubMedGoogle Scholar
  89. 89.
    Guglielmelli P, Tozzi L, Pancrazzi A, et al. MicroRNA expression profile in granulocytes from primary myelofibrosis patients. Exp Hematol. 2007;35:1708–1718.CrossRefPubMedGoogle Scholar
  90. 90.
    Guglielmelli P, Zini R, Bogani C, et al. Molecular profiling of CD34+ cells in idiopathic myelofibrosis identifies a set of disease-associated genes and reveals the clinical significance of Wilms’ tumor gene 1 (WT1). Stem Cells. 2007;25:165–173.CrossRefPubMedGoogle Scholar
  91. 91.
    Du T, Zamore PD. MicroPrimer: the biogenesis and function of microRNA. Development. 2005;132:4645–4652.CrossRefPubMedGoogle Scholar
  92. 92.
    Bruchova H, Merkerova M, Prchal JT. Aberrant expression of microRNA in polycythemia vera. Haematologica. 2008;93(7):1009–1016.CrossRefPubMedGoogle Scholar
  93. 93.
    Pesu M, Laurence A, Kishore N, Zwillich SH, Chan G, O’Shea JJ. Therapeutic targeting of Janus kinases. Immunol Rev. 2008;223:132–142.CrossRefPubMedGoogle Scholar
  94. 94.
    Lipka DB, Hoffman LS, Heidel F, et al. LS104, a non-ATP-competitive small-molecule inhibitor of JAK2, is potently inducing apoptosis in JAK2V617F-positive cells. Mol Cancer Ther. 2008;7(5):1176–1184.CrossRefPubMedGoogle Scholar
  95. 95.
    Hexner EO, Serdikoff C, Jan M, et al. Lestaurtinib (CEP701) is a JAK2 inhibitor that suppresses JAK2/STAT5 signaling and the proliferation of primary erythroid cells from patients with myeloproliferative disorders. Blood. 2008;111:5663–5671.CrossRefPubMedGoogle Scholar
  96. 96.
    Grunberger T, Demin P, Rounova O, et al. Inhibition of acute lymphoblastic and myeloid leukemias by a novel kinase inhibitor. Blood. 2003;102:4153–4158.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Mike Perez
    • 1
  • Chung-Che (Jeff) Chang
    • 2
    • 3
  1. 1.Department of PathologyThe Methodist Hospital and The Methodist Research InstituteHoustonUSA
  2. 2.The Methodist HospitalHoustonUSA
  3. 3.Department of PathologyWeill Medical College of Cornell UniversityNew YorkUSA

Personalised recommendations