Chronic Myelogenous Leukemia

  • Dan Jones
Part of the Molecular Pathology Library book series (MPLB, volume 4)


Chronic myelogenous leukemia (CML) is the one of the most common chronic myeloproliferative disorders. It has become the paradigmatic disease for molecular diagnosis and monitoring for several reasons: (1) CML has a unitary molecular definition, requiring the demonstration of the t(9;22)(q34;q11) chromosomal translocation or its product, the BCR-ABL fusion gene; (2) The BCR-ABL chimeric protein is integral to CML leukemogenesis, as demonstrated in mouse transgenic leukemia models; (3) Blocking the BCR-ABL kinase, using the tyrosine kinase inhibitor (TKI) imatinib mesylate (Gleevec), results in regression of CML and durable clinical response in nearly all patients; (4) Daily lifetime therapy with imatinib (or similar second-generation TKIs) has become the standard therapy for CML, allowing standardized definitions of response and treatment resistance to be developed.


Chronic Myelogenous Leukemia Reverse Transcription Quantitative Polymerase Chain Reaction Major Molecular Response Blast Phase Acute Lymphoid Leukemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Li S, Ilaria RL Jr, Million RP, Daley GQ, Van Etten RA. The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med. 1999;189(9):1399–1412.CrossRefPubMedGoogle Scholar
  2. 2.
    Branford S, Hughes TP, Rudzki Z. Dual transcription of b2a2 and b3a2 BCR-ABL transcripts in chronic myeloid leukaemia is confined to patients with a linked polymorphism within the BCR gene. Br J Haematol. 2002;117(4):875–877.CrossRefPubMedGoogle Scholar
  3. 3.
    Melo JV. BCR-ABL gene variants. Baillieres Clin Haematol. 1997;10(2):203–222.CrossRefPubMedGoogle Scholar
  4. 4.
    Jones D, Luthra R, Cortes J, et al. BCR-ABL fusion transcript types and levels and their interaction with secondary genetic changes in determining the phenotype of Philadelphia chromosome-positive leukemias. Blood. 2008;112(13):5190–5192.CrossRefPubMedGoogle Scholar
  5. 5.
    Kerkela R, Grazette L, Yacobi R, et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med. 2006;12(8):908–916.CrossRefPubMedGoogle Scholar
  6. 6.
    Druker BJ, Guilhot F, O’Brien SG, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355(23):2408–2417.CrossRefPubMedGoogle Scholar
  7. 7.
    Kantarjian HM, Talpaz M, O’Brien S, et al. Dose escalation of imatinib mesylate can overcome resistance to standard-dose therapy in patients with chronic myelogenous leukemia. Blood. 2003;101(2):473–475.CrossRefPubMedGoogle Scholar
  8. 8.
    Quintas-Cardama A, Cortes J. Tailoring tyrosine kinase inhibitor therapy to tackle specific BCR-ABL1 mutant clones. Leuk Res. 2008;32(8):1313–1316.CrossRefPubMedGoogle Scholar
  9. 9.
    Hughes T. ABL kinase inhibitor therapy for CML: baseline assessments and response monitoring. Hematology Am Soc Hematol Educ Program. 2006:211–218.Google Scholar
  10. 10.
    Hughes TP, Kaeda J, Branford S, et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med. 2003;349(15):1423–1432.CrossRefPubMedGoogle Scholar
  11. 11.
    Giralt SA, Arora M, Goldman JM, et al. Impact of imatinib therapy on the use of allogeneic haematopoietic progenitor cell transplantation for the treatment of chronic myeloid leukaemia. Br J Haematol. 2007;137(5):461–467.CrossRefPubMedGoogle Scholar
  12. 12.
    Cortes J, Talpaz M, O’Brien S, et al. Molecular responses in patients with chronic myelogenous leukemia in chronic phase treated with imatinib mesylate. Clin Cancer Res. 2005;11(9):3425–3432.CrossRefPubMedGoogle Scholar
  13. 13.
    Gabert J, Beillard E, van der Velden VH, et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – a Europe against cancer program. Leukemia. 2003;17(12):2318–2357.CrossRefPubMedGoogle Scholar
  14. 14.
    Wang YL, Lee JW, Cesarman E, Jin DK, Csernus B. Molecular monitoring of chronic myelogenous leukemia: identification of the most suitable internal control gene for real-time quantification of BCR-ABL transcripts. J Mol Diagn. 2006;8(2):231–239.CrossRefPubMedGoogle Scholar
  15. 15.
    Beillard E, Pallisgaard N, van der Velden VH, et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’ quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) – a Europe against cancer program. Leukemia. 2003;17(12):2474–2486.CrossRefPubMedGoogle Scholar
  16. 16.
    White DL, Saunders VA, Dang P, et al. Most CML patients who have a suboptimal response to imatinib have low OCT-1 activity: higher doses of imatinib may overcome the negative impact of low OCT-1 activity. Blood. 2007;110(12):4064–4072.CrossRefPubMedGoogle Scholar
  17. 17.
    Illmer T, Schaich M, Platzbecker U, et al. P-glycoprotein-mediated drug efflux is a resistance mechanism of chronic myelogenous leukemia cells to treatment with imatinib mesylate. Leukemia. 2004;18(3):401–408.CrossRefPubMedGoogle Scholar
  18. 18.
    Villuendas R, Steegmann JL, Pollan M, et al. Identification of genes involved in imatinib resistance in CML: a gene-expression profiling approach. Leukemia. 2006;20(6):1047–1054.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang W, Cortes J, Yao H, et al. Predictors of primary imatinib resistance in chronic myeloid leukemia are distinct from those in secondary imatinib resistance. J Clin Oncol. 2009;27:3642–3649.CrossRefPubMedGoogle Scholar
  20. 20.
    Samanta AK, Lin H, Sun T, Kantarjian H, Arlinghaus RB. Janus kinase 2: a critical target in chronic myelogenous leukemia. Cancer Res. 2006;66(13):6468–6472.CrossRefPubMedGoogle Scholar
  21. 21.
    Druker BJ. Circumventing resistance to kinase-inhibitor therapy. N Engl J Med. 2006;354(24):2594–2596.CrossRefPubMedGoogle Scholar
  22. 22.
    Jabbour E, Kantarjian H, Jones D, et al. Frequency and clinical significance of BCR-ABL mutations in patients with chronic myeloid leukemia treated with imatinib mesylate. Leukemia. 2006;20(10):1767–1773.CrossRefPubMedGoogle Scholar
  23. 23.
    Branford S, Rudzki Z, Walsh S, et al. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood. 2003;102(1):276–283.CrossRefPubMedGoogle Scholar
  24. 24.
    Soverini S, Colarossi S, Gnani A, et al. Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA working party on chronic myeloid leukemia. Clin Cancer Res. 2006;12(24):7374–7379.CrossRefPubMedGoogle Scholar
  25. 25.
    Branford S, Rudzki Z, Parkinson I, et al. Real-time quantitative PCR analysis can be used as a primary screen to identify patients with CML treated with imatinib who have BCR-ABL kinase domain mutations. Blood. 2004;104(9):2926–2932.CrossRefPubMedGoogle Scholar
  26. 26.
    Hughes T, Deininger M, Hochhaus A, et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006;108(1):28–37.CrossRefPubMedGoogle Scholar
  27. 27.
    Apperley JF. Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol. 2007;8(11):1018–1029.CrossRefPubMedGoogle Scholar
  28. 28.
    Gruber FX, Hjorth-Hansen H, Mikkola I, Stenke L, Johansen T. A novel BCR-ABL splice isoform is associated with the L248V mutation in CML patients with acquired resistance to imatinib. Leukemia. 2006;20(11):2057–2060.CrossRefPubMedGoogle Scholar
  29. 29.
    Jones D, Kamel-Reid S, Bahler D, et al. Laboratory practice guidelines for detecting and reporting BCR-ABL drug resistance mutations in chronic myelogenous leukemia and acute lymphoblastic leukemia. J Mol Diagn. 2009;11(1):4–11.CrossRefPubMedGoogle Scholar
  30. 30.
    Khorashad JS, Milojkovic D, Mehta P, et al. In vivo kinetics of kinase domain mutations in CML patients treated with dasatinib after failing imatinib. Blood. 2008;111(4):2378–2381.CrossRefPubMedGoogle Scholar
  31. 31.
    Jones D, Thomas D, Yin CC, et al. Kinase domain point mutations in Philadelphia chromosome-positive acute lymphoblastic leukemia emerge after therapy with BCR-ABL kinase inhibitors. Cancer. 2008;113(5):985–994.CrossRefPubMedGoogle Scholar
  32. 32.
    Oehler VG, Qin J, Ramakrishnan R, et al. Absolute quantitative detection of ABL tyrosine kinase domain point mutations in chronic myeloid leukemia using a novel nanofluidic platform and mutation-specific PCR. Leukemia. 2009;23(2):396–399.CrossRefPubMedGoogle Scholar
  33. 33.
    Kantarjian H, Schiffer C, Jones D, Cortes J. Monitoring the response and course of chronic myeloid leukemia in the modern era of BCR-ABL tyrosine kinase inhibitors: practical advice on the use and interpretation of monitoring methods. Blood. 2008;111(4):1774–1780.CrossRefPubMedGoogle Scholar
  34. 34.
    Baccarani M, Saglio G, Goldman J, et al. Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood. 2006;108(6):1809–1820.CrossRefPubMedGoogle Scholar
  35. 35.
    O’Hare T, Eide CA, Deininger MW. BCR-ABL kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood. 2007;110(7):2242–2249.CrossRefPubMedGoogle Scholar
  36. 36.
    Bradeen HA, Eide CA, O’Hare T, et al. Comparison of imatinib mesylate, dasatinib (BMS-354825), and nilotinib (AMN107) in an N-ethyl-N-nitrosourea (ENU)-based mutagenesis screen: high efficacy of drug combinations. Blood. 2006;108(7):2332–2338.CrossRefPubMedGoogle Scholar
  37. 37.
    Burgess MR, Skaggs BJ, Shah NP, Lee FY, Sawyers CL. Comparative analysis of two clinically active BCR-ABL kinase inhibitors reveals the role of conformation-specific binding in resistance. Proc Natl Acad Sci U S A. 2005;102(9):3395–3400.CrossRefPubMedGoogle Scholar
  38. 38.
    O’Hare T, Walters DK, Stoffregen EP, et al. In vitro activity of BCR-ABL inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant ABL kinase domain mutants. Cancer Res. 2005;65(11):4500–4505.CrossRefPubMedGoogle Scholar
  39. 39.
    Ray A, Cowan-Jacob SW, Manley PW, Mestan J, Griffin JD. Identification of BCR-ABL point mutations conferring resistance to the ABL Kinase inhibitor AMN107 (nilotinib) by a random mutagenesis study. Blood. 2007;109(11):5011–5015.CrossRefPubMedGoogle Scholar
  40. 40.
    von Bubnoff N, Manley PW, Mestan J, Sanger J, Peschel C, Duyster J. BCR-ABL resistance screening predicts a limited spectrum of point mutations to be associated with clinical resistance to the ABL kinase inhibitor nilotinib (AMN107). Blood. 2006;108(4):1328–1333.CrossRefGoogle Scholar
  41. 41.
    Cortes J, Jabbour E, Kantarjian H, et al. Dynamics of BCR-ABL kinase domain mutations in chronic myeloid leukemia after sequential treatment with multiple tyrosine kinase inhibitors. Blood. 2007;110(12):4005–4011.CrossRefPubMedGoogle Scholar
  42. 42.
    Yin CC, Cortes J, Barkoh B, Hayes K, Kantarjian H, Jones D. t(3;21)(q26;q22) in myeloid leukemia: an aggressive syndrome of blast transformation associated with hydroxyurea or antimetabolite therapy. Cancer. 2006;106(8):1730–1738.CrossRefPubMedGoogle Scholar
  43. 43.
    Roche-Lestienne C, Deluche L, Corm S, et al. RUNX1 DNA-binding mutations and RUNX1-PRDM16 cryptic fusions in BCR-ABL+ leukemias are frequently associated with secondary trisomy 21 and may contribute to clonal evolution and imatinib resistance. Blood. 2008;111(7):3735–3741.CrossRefPubMedGoogle Scholar
  44. 44.
    Miething C, Grundler R, Mugler C, et al. Retroviral insertional mutagenesis identifies RUNX genes involved in chronic myeloid leukemia disease persistence under imatinib treatment. Proc Natl Acad Sci U S A. 2007;104(11):4594–4599.CrossRefPubMedGoogle Scholar
  45. 45.
    Radich JP, Dai H, Mao M, et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci U S A. 2006;103(8):2794–2799.CrossRefPubMedGoogle Scholar
  46. 46.
    Mullighan CG, Miller CB, Radtke I, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature. 2008;453(7191):110–114.CrossRefPubMedGoogle Scholar
  47. 47.
    Mullighan CG, Williams RT, Downing JR, Sherr CJ. Failure of CDKN2A/B (INK4A/B-ARF)-mediated tumor suppression and resistance to targeted therapy in acute lymphoblastic leukemia induced by BCR-ABL. Genes Dev. 2008;22(11):1411–1415.CrossRefPubMedGoogle Scholar
  48. 48.
    Stoklosa T, Poplawski T, Koptyra M, et al. BCR/ABL inhibits mismatch repair to protect from apoptosis and induce point mutations. Cancer Res. 2008;68(8):2576–2580.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Dan Jones
    • 1
    • 2
  1. 1.MD Anderson Cancer CenterHoustonUSA
  2. 2.Quest DiagnosticsChantillyUSA

Personalised recommendations