Classical Hodgkin Lymphoma and Nodular Lymphocyte Predominant Hodgkin Lymphoma

  • Michele Roullet
  • Adam Bagg
Part of the Molecular Pathology Library book series (MPLB, volume 4)


Hodgkin lymphoma (HL) is a rather unique neoplasm. In contrast to most other lymphomas, and indeed malignancies in general, the bulk of the infiltrate in tissues affected by HL is comprised of non-neoplastic T cells, B-cells, macrophages, eosinophils, neutrophils, and plasma cells, while the neoplastic cells are rare, accounting for only approximately 1% of the tumor mass. The neoplastic cells include the hallmark binucleated large Reed–Sternberg cells, and morphologic variants thereof, which are collectively referred to as Hodgkin/Reed–Sternberg (HRS) cells. Intricate bi-directional signaling between the neoplastic cells and this pleomorphic, reactive background is integral to the tumor’s pathobiology and clinical features, with an evaluation of the various neoplastic and reactive cells being central to contemporary diagnosis and classification. Another unusual feature is that whereas the cell of origin in other lymphomas can almost always be correlated with a specific stage of lymphoid maturation, HRS cells do not have a morphologically and immunophenotypically identifiable normal hematopoietic counterpart. In fact, the unusual but characteristic immunophenotype of HRS cells includes antigens typically found on a spectrum of cells, such as dendritic cells, granulocytes, monocytes, B-cells, and plasma cells., For these reasons (rarity of neoplastic cells within the tumor and confusing immunophenotype), determining the ontogeny of HRS cells had been technically challenging. Additional impediments to characterizing these cells included the presence of only several cell lines and no animal model.


Germinal Center Hodgkin Lymphoma Nodular Sclerosis Mixed Cellularity Hodgkin Lymphoma Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Weiss L, Chan JKC, MacLennan K. Hodgkin’s Disease. Philadelphia: Lippincott Williams & Wilkins; 1999.Google Scholar
  2. 2.
    Pileri SA, Ascani S, Leoncini L, et al. Hodgkin’s lymphoma: the pathologist’s viewpoint. J Clin Pathol. 2002;55:162.PubMedCrossRefGoogle Scholar
  3. 3.
    Kuppers R. Molecular biology of Hodgkin’s lymphoma. Adv Cancer Res. 2002;84:277.PubMedCrossRefGoogle Scholar
  4. 4.
    Kuppers R, Hansmann ML. The Hodgkin and Reed/Sternberg cell. Int J Biochem Cell Biol. 2005;37:511.PubMedCrossRefGoogle Scholar
  5. 5.
    Kuppers R, Rajewsky K, Zhao M, et al. Hodgkin disease: Hodgkin and Reed–Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc Natl Acad Sci U S A. 1994;91:10962.PubMedCrossRefGoogle Scholar
  6. 6.
    Marafioti T, Hummel M, Foss HD, et al. Hodgkin and Reed–Sternberg cells represent an expansion of a single clone originating from a germinal center B-cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription. Blood. 2000;95:1443.PubMedGoogle Scholar
  7. 7.
    Kanzler H, Kuppers R, Hansmann ML, Rajewsky K. Hodgkin and Reed–Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med. 1996;184:1495.PubMedCrossRefGoogle Scholar
  8. 8.
    Kuppers R, Schwering I, Brauninger A, et al. Biology of Hodgkin’s lymphoma. Ann Oncol. 2002;13(suppl 1):11.PubMedGoogle Scholar
  9. 9.
    Muschen M, Rajewsky K, Brauninger A, et al. Rare occurrence of classical Hodgkin’s disease as a T cell lymphoma. J Exp Med. 2000;191:387.PubMedCrossRefGoogle Scholar
  10. 10.
    Seitz V, Hummel M, Marafioti T, et al. Detection of clonal T-cell receptor gamma-chain gene rearrangements in Reed–Sternberg cells of classic Hodgkin disease. Blood. 2000;95:3020.PubMedGoogle Scholar
  11. 11.
    Jaffe ES, Harris N, Stein H, Vardiman J. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haemopoietic and Lymphoid Tissues. Lyon: World Health Organization; 2001.Google Scholar
  12. 12.
    Anagnostopoulos I, Hansmann ML, Franssila K, et al. European Task Force on Lymphoma project on lymphocyte predominance Hodgkin disease: histologic and immunohistologic analysis of submitted cases reveals 2 types of Hodgkin disease with a nodular growth pattern and abundant lymphocytes. Blood. 2000;96:1889.PubMedGoogle Scholar
  13. 13.
    Greiner A, Tobollik S, Buettner M, et al. Differential expression of activation-induced cytidine deaminase (AID) in nodular lymphocyte-predominant and classical Hodgkin lymphoma. J Pathol. 2005;205:541.PubMedCrossRefGoogle Scholar
  14. 14.
    Ohno T, Stribley JA, Wu G, et al. Clonality in nodular lymphocyte-predominant Hodgkin’s disease. N Engl J Med. 1997;337:459.PubMedCrossRefGoogle Scholar
  15. 15.
    Diehl V, Sextro M, Franklin J, et al. Clinical presentation, course, and prognostic factors in lymphocyte-predominant Hodgkin’s disease and lymphocyte-rich classical Hodgkin’s disease: report from the European Task Force on lymphoma project on lymphocyte-predominant Hodgkin’s Disease. J Clin Oncol. 1999;17:776.PubMedGoogle Scholar
  16. 16.
    Bargou RC, Leng C, Krappmann D, et al. High-level nuclear NF-kappa B and Oct-2 is a common feature of cultured Hodgkin/Reed–Sternberg cells. Blood. 1996;87:4340.PubMedGoogle Scholar
  17. 17.
    Bargou RC, Emmerich F, Krappmann D, et al. Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest. 1997;100:2961.PubMedCrossRefGoogle Scholar
  18. 18.
    Jost PJ, Ruland J. Aberrant NF-kappaB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood. 2007;109:2700.PubMedGoogle Scholar
  19. 19.
    Cabannes E, Khan G, Aillet F, et al. Mutations in the IkBa gene in Hodgkin’s disease suggest a tumour suppressor role for IkappaBalpha. Oncogene. 1999;18:3063.PubMedCrossRefGoogle Scholar
  20. 20.
    Emmerich F, Theurich S, Hummel M, et al. Inactivating I kappa B epsilon mutations in Hodgkin/Reed–Sternberg cells. J Pathol. 2003;201:413.PubMedCrossRefGoogle Scholar
  21. 21.
    Garcia JF, Camacho FI, Morente M, et al. Hodgkin and Reed–Sternberg cells harbor alterations in the major tumor suppressor pathways and cell-cycle checkpoints: analyses using tissue microarrays. Blood. 2003;101:681.PubMedCrossRefGoogle Scholar
  22. 22.
    Kapp U, Yeh WC, Patterson B, et al. Interleukin 13 is secreted by and stimulates the growth of Hodgkin and Reed–Sternberg cells. J Exp Med. 1999;189:1939.PubMedCrossRefGoogle Scholar
  23. 23.
    Alexander WS, Hilton DJ. The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Annu Rev Immunol. 2004;22:503.PubMedCrossRefGoogle Scholar
  24. 24.
    Weniger MA, Melzner I, Menz CK, et al. Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene. 2006;25:2679.PubMedCrossRefGoogle Scholar
  25. 25.
    Falzetti D, Crescenzi B, Matteuci C, et al. Genomic instability and recurrent breakpoints are main cytogenetic findings in Hodgkin’s disease. Haematologica. 1999;84:298.PubMedGoogle Scholar
  26. 26.
    Weber-Matthiesen K, Deerberg J, Poetsch M, et al. Numerical chromosome aberrations are present within the CD30+ Hodgkin and Reed–Sternberg cells in 100% of analyzed cases of Hodgkin’s disease. Blood. 1995;86:1464.PubMedGoogle Scholar
  27. 27.
    Joos S, Menz CK, Wrobel G, et al. Classical Hodgkin lymphoma is characterized by recurrent copy number gains of the short arm of chromosome 2. Blood. 2002;99:1381.PubMedCrossRefGoogle Scholar
  28. 28.
    Joos S, Kupper M, Ohl S, et al. Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. Cancer Res. 2000;60:549.PubMedGoogle Scholar
  29. 29.
    Kupper M, Joos S, von Bonin F, et al. MDM2 gene amplification and lack of p53 point mutations in Hodgkin and Reed–Sternberg cells: results from single-cell polymerase chain reaction and molecular cytogenetic studies. Br J Haematol. 2001;112:768.PubMedCrossRefGoogle Scholar
  30. 30.
    Feys T, Poppe B, De Preter K, et al. A detailed inventory of DNA copy number alterations in four commonly used Hodgkin’s lymphoma cell lines. Haematologica. 2007;92:913.PubMedCrossRefGoogle Scholar
  31. 31.
    Martin-Subero JI, Wlodarska I, Bastard C, et al. Chromosomal rearrangements involving the BCL3 locus are recurrent in classical Hodgkin and peripheral T-cell lymphoma. Blood. 2006;108:401.PubMedCrossRefGoogle Scholar
  32. 32.
    Mathas S, Johrens K, Joos S, et al. Elevated NF-kappaB p50 complex formation and Bcl-3 expression in classical Hodgkin, anaplastic large-cell, and other peripheral T-cell lymphomas. Blood. 2005;106:4287.PubMedCrossRefGoogle Scholar
  33. 33.
    Kluiver J, Kok K, Pfeil I, et al. Global correlation of genome and transcriptome changes in classical Hodgkin lymphoma. Hematol Oncol. 2007;25:21.PubMedCrossRefGoogle Scholar
  34. 34.
    Fadlelmola FM, Zhou M, de Leeuw RJ, et al. Sub-megabase resolution tiling (SMRT) array-based comparative genomic hybridization profiling reveals novel gains and losses of chromosomal regions in Hodgkin Lymphoma and Anaplastic Large Cell Lymphoma cell lines. Mol Cancer. 2008;7:2.PubMedCrossRefGoogle Scholar
  35. 35.
    Garcia JF, Villuendas R, Algara P, et al. Loss of p16 protein expression associated with methylation of the p16INK4A gene is a frequent finding in Hodgkin’s disease. Lab Invest. 1999;79:1453.PubMedGoogle Scholar
  36. 36.
    Garcia MJ, Martinez-Delgado B, Cebrian A, et al. Different incidence and pattern of p15INK4b and p16INK4a promoter region hypermethylation in Hodgkin’s and CD30-Positive non-Hodgkin’s lymphomas. Am J Pathol. 2002;161:1007.PubMedGoogle Scholar
  37. 37.
    Sanchez-Aguilera A, Delgado J, Camacho FI, et al. Silencing of the p18INK4c gene by promoter hypermethylation in Reed–Sternberg cells in Hodgkin lymphomas. Blood. 2004;103:2351.PubMedCrossRefGoogle Scholar
  38. 38.
    Murray PG, Qiu GH, Fu L, et al. Frequent epigenetic inactivation of the RASSF1A tumor suppressor gene in Hodgkin’s lymphoma. Oncogene. 2004;23:1326.PubMedCrossRefGoogle Scholar
  39. 39.
    Ying J, Gao Z, Li H, et al. Frequent epigenetic silencing of protocadherin 10 by methylation in multiple haematologic malignancies. Br J Haematol. 2007;136:829.PubMedCrossRefGoogle Scholar
  40. 40.
    Watanabe M, Ogawa Y, Itoh K, et al. Hypomethylation of CD30 CpG islands with aberrant JunB expression drives CD30 induction in Hodgkin lymphoma and anaplastic large cell lymphoma. Lab Invest. 2008;88:48.PubMedCrossRefGoogle Scholar
  41. 41.
    Martin-Subero JI, Klapper W, Sotnikova A, et al. Chromosomal breakpoints affecting immunoglobulin loci are recurrent in Hodgkin and Reed–Sternberg cells of classical Hodgkin lymphoma. Cancer Res. 2006;66:10332.PubMedCrossRefGoogle Scholar
  42. 42.
    Wlodarska I, Nooyen P, Maes B, et al. Frequent occurrence of BCL6 rearrangements in nodular lymphocyte predominance Hodgkin lymphoma but not in classical Hodgkin lymphoma. Blood. 2003;101:706.PubMedCrossRefGoogle Scholar
  43. 43.
    LeBrun DP, Ngan BY, Weiss LM, et al. The bcl-2 oncogene in Hodgkin’s disease arising in the setting of follicular non-Hodgkin’s lymphoma. Blood. 1994;83:223.PubMedGoogle Scholar
  44. 44.
    Schmitz R, Renne C, Rosenquist R, et al. Insights into the multistep transformation process of lymphomas: IgH-associated translocations and tumor suppressor gene mutations in clonally related composite Hodgkin’s and non-Hodgkin’s lymphomas. Leukemia. 2005;19:1452.PubMedCrossRefGoogle Scholar
  45. 45.
    Navarro A, Gaya A, Martinez A, et al. MicroRNA expression profiling in classical Hodgkin lymphoma. Blood. 2008;111:2825-2832.PubMedCrossRefGoogle Scholar
  46. 46.
    Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65:6029.PubMedCrossRefGoogle Scholar
  47. 47.
    Savage KJ, Monti S, Kutok JL, et al. The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood. 2003;102:3871.PubMedCrossRefGoogle Scholar
  48. 48.
    Rosenwald A, Wright G, Leroy K, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198:851.PubMedCrossRefGoogle Scholar
  49. 49.
    Renne C, Hinsch N, Willenbrock K, et al. The aberrant coexpression of several receptor tyrosine kinases is largely restricted to EBV-negative cases of classical Hodgkin’s lymphoma. Int J Cancer. 2007;120:2504.PubMedCrossRefGoogle Scholar
  50. 50.
    Joos S, Granzow M, Holtgreve-Grez H, et al. Hodgkin’s lymphoma cell lines are characterized by frequent aberrations on chromosomes 2p and 9p including REL and JAK2. Int J Cancer. 2003;103:489.PubMedCrossRefGoogle Scholar
  51. 51.
    Hsi ED, Sup SJ, Alemany C, et al. MAL is expressed in a subset of Hodgkin lymphoma and identifies a population of patients with poor prognosis. Am J Clin Pathol. 2006;125:776.PubMedCrossRefGoogle Scholar
  52. 52.
    Copie-Bergman C, Plonquet A, Alonso MA, et al. MAL expression in lymphoid cells: further evidence for MAL as a distinct molecular marker of primary mediastinal large B-cell lymphomas. Mod Pathol. 2002;15:1172.PubMedCrossRefGoogle Scholar
  53. 53.
    Atayar C, Poppema S, Blokzijl T, et al. Expression of the T-cell transcription factors, GATA-3 and T-bet, in the neoplastic cells of Hodgkin lymphomas. Am J Pathol. 2005;166:127.PubMedGoogle Scholar
  54. 54.
    Carvalho PC, Carvalho Mda G, Degrave W, et al. Differential protein expression patterns obtained by mass spectrometry can aid in the diagnosis of Hodgkin’s disease. J Exp Ther Oncol. 2007;6:137.PubMedGoogle Scholar
  55. 55.
    Wallentine JC, Kim KK, Seiler CE III, et al. Comprehensive identification of proteins in Hodgkin lymphoma-derived Reed–Sternberg cells by LC-MS/MS. Lab Invest. 2007;87:1113.PubMedCrossRefGoogle Scholar
  56. 56.
    Ma Y, Visser L, Roelofsen H, et al. Proteomics analysis of Hodgkin lymphoma: identification of new players involved in the cross-talk between HRS cells and infiltrating lymphocytes. Blood. 2008;111:2339.PubMedCrossRefGoogle Scholar
  57. 57.
    Staratschek-Jox A, Shugart YY, Strom SS, et al. Genetic susceptibility to Hodgkin’s lymphoma and to secondary cancer: workshop report. Ann Oncol. 2002;13(suppl 1):30.PubMedGoogle Scholar
  58. 58.
    Diepstra A, Niens M, te Meerman GJ, et al. Genetic susceptibility to Hodgkin’s lymphoma associated with the human leukocyte antigen region. Eur J Haematol Suppl. 2005:34.Google Scholar
  59. 59.
    Ferraris AM, Racchi O, Rapezzi D, et al. Familial Hodgkin’s disease: a disease of young adulthood? Ann Hematol. 1997;74:131.PubMedCrossRefGoogle Scholar
  60. 60.
    Horwitz MS, Mealiffe ME. Further evidence for a pseudoautosomal gene for Hodgkin’s lymphoma: Reply to ‘The familial risk of Hodgkin’s lymphoma ranks among the highest in the Swedish Family-Cancer Database’ by Altieri A and Hemminki K. Leukemia. 2007;21:351.PubMedCrossRefGoogle Scholar
  61. 61.
    Niens M, Jarrett RF, Hepkema B, et al. HLA-A*02 is associated with a reduced risk and HLA-A*01 with an increased risk of developing EBV-positive Hodgkin lymphoma. Blood. 2007;110:3310–3315.PubMedCrossRefGoogle Scholar
  62. 62.
    Cordano P, Lake A, Shield L, et al. Effect of IL-6 promoter polymorphism on incidence and outcome in Hodgkin’s lymphoma. Br J Haematol. 2005;128:493.PubMedCrossRefGoogle Scholar
  63. 63.
    da Silva GN, Bacchi MM, Rainho CA, da Oliveira DE. Epstein–Barr virus infection and single nucleotide polymorphisms in the promoter region of interleukin 10 gene in patients with Hodgkin lymphoma. Arch Pathol Lab Med. 2007;131:1691.PubMedGoogle Scholar
  64. 64.
    Hohaus S, Giachelia M, Di Febo A, et al. Polymorphism in cytokine genes as prognostic markers in Hodgkin’s lymphoma. Ann Oncol. 2007;18:1376.PubMedCrossRefGoogle Scholar
  65. 65.
    Besson C, Roetynck S, Williams F, et al. Association of killer cell immunoglobulin-like receptor genes with Hodgkin’s lymphoma in a familial study. PLoS One. 2007;2:e406.PubMedCrossRefGoogle Scholar
  66. 66.
    Schuetz C, Barbi G, Barth TF, et al. ICF syndrome: high variability of the chromosomal phenotype and association with classical Hodgkin lymphoma. Am J Med Genet A. 2007;143:2052.Google Scholar
  67. 67.
    Kvale G, Hoiby EA, Pedersen E. Hodgkin’s disease in patients with previous infectious mononucleosis. Int J Cancer. 1979;23:593.PubMedCrossRefGoogle Scholar
  68. 68.
    Gutensohn N, Cole P. Childhood social environment and Hodgkin’s disease. N Engl J Med. 1981;304:135.PubMedCrossRefGoogle Scholar
  69. 69.
    Weiss LM, Movahed LA, Warnke RA, Sklar J. Detection of Epstein–Barr viral genomes in Reed–Sternberg cells of Hodgkin’s disease. N Engl J Med. 1989;320:502.PubMedCrossRefGoogle Scholar
  70. 70.
    Jarrett RF, MacKenzie J. Epstein–Barr virus and other candidate viruses in the pathogenesis of Hodgkin’s disease. Semin Hematol. 1999;36:260.PubMedGoogle Scholar
  71. 71.
    Glaser SL, Lin RJ, Stewart SL, et al. Epstein–Barr virus-associated Hodgkin’s disease: epidemiologic characteristics in international data. Int J Cancer. 1997;70:375.PubMedCrossRefGoogle Scholar
  72. 72.
    Pallesen G, Hamilton-Dutoit SJ, Rowe M, Young LS. Expression of Epstein–Barr virus latent gene products in tumour cells of Hodgkin’s disease. Lancet. 1991;337:320.PubMedCrossRefGoogle Scholar
  73. 73.
    Niedobitek G, Kremmer E, Herbst H, et al. Immunohistochemical detection of the Epstein–Barr virus-encoded latent membrane protein 2A in Hodgkin’s disease and infectious mononucleosis. Blood. 1997;90:1664.PubMedGoogle Scholar
  74. 74.
    Kilger E, Kieser A, Baumann M, Hammerschmidt W. Epstein–Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J. 1998;17:1700.PubMedCrossRefGoogle Scholar
  75. 75.
    Henderson S, Rowe M, Gregory C, et al. Induction of bcl-2 expression by Epstein–Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell. 1991;65:1107.PubMedCrossRefGoogle Scholar
  76. 76.
    Eliopoulos AG, Stack M, Dawson CW, et al. Epstein–Barr virus-encoded LMP1 and CD40 mediate IL-6 production in epithelial cells via an NF-kappaB pathway involving TNF receptor-associated factors. Oncogene. 1997;14:2899.PubMedCrossRefGoogle Scholar
  77. 77.
    Gires O, ZimberStrobl U, Gonnella R, et al. Latent membrane protein 1 of Epstein–Barr virus mimics a constitutively active receptor molecule. EMBO J. 1997;16:6131.PubMedCrossRefGoogle Scholar
  78. 78.
    Marshall NA, Culligan DJ, Tighe J, et al. The relationships between Epstein–Barr virus latent membrane protein 1 and regulatory T cells in Hodgkin’s lymphoma. Exp Hematol. 2007;35:596.PubMedCrossRefGoogle Scholar
  79. 79.
    Kim SH, Shin YK, Lee IS, et al. Viral latent membrane protein 1 (LMP-1)-induced CD99 down-regulation in B cells leads to the generation of cells with Hodgkin’s and Reed–Sternberg phenotype. Blood. 2000;95:294.PubMedGoogle Scholar
  80. 80.
    Caldwell RG, Wilson JB, Anderson SJ, Longnecker R. Epstein–Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity. 1998;9:405.PubMedCrossRefGoogle Scholar
  81. 81.
    Brauninger A, Schmitz R, Bechtel D, et al. Molecular biology of Hodgkin’s and Reed/Sternberg cells in Hodgkin’s lymphoma. Int J Cancer. 2006;118:1853.PubMedCrossRefGoogle Scholar
  82. 82.
    Flavell JR, Baumforth KR, Wood VH, et al. Down-regulation of the TGF-beta target gene, PTPRK, by the Epstein–Barr virus encoded EBNA1 contributes to the growth and survival of Hodgkin lymphoma cells. Blood. 2008;111:292.PubMedCrossRefGoogle Scholar
  83. 83.
    Benharroch D, Shemer-Avni Y, Myint YY, et al. Measles virus: evidence of an association with Hodgkin’s disease. Br J Cancer. 2004;91:572.PubMedCrossRefGoogle Scholar
  84. 84.
    Maggio E, Benharroch D, Gopas J, et al. Absence of measles virus genome and transcripts in Hodgkin–Reed/Sternberg cells of a cohort of Hodgkin lymphoma patients. Int J Cancer. 2007;121:448.PubMedCrossRefGoogle Scholar
  85. 85.
    Lacroix A, Jaccard A, Rouzioux C, et al. HHV-6 and EBV DNA quantitation in lymph nodes of 86 patients with Hodgkin’s lymphoma. J Med Virol. 2007;79:1349.PubMedCrossRefGoogle Scholar
  86. 86.
    Cossman J, Annunziata CM, Barash S, et al. Reed–Sternberg cell genome expression supports a B-cell lineage. Blood. 1999;94:411.PubMedGoogle Scholar
  87. 87.
    Schwering I, Brauninger A, Klein U, et al. Loss of the B-lineage-specific gene expression program in Hodgkin and Reed–Sternberg cells of Hodgkin lymphoma. Blood. 2003;101:1505.PubMedCrossRefGoogle Scholar
  88. 88.
    Kuppers R, Klein U, Schwering I, et al. Identification of Hodgkin and Reed–Sternberg cell-specific genes by gene expression profiling. J Clin Invest. 2003;111:529.PubMedGoogle Scholar
  89. 89.
    Ushmorov A, Ritz O, Hummel M, et al. Epigenetic silencing of the immunoglobulin heavy-chain gene in classical Hodgkin lymphoma-derived cell lines contributes to the loss of immunoglobulin expression. Blood. 2004;104:3326.PubMedCrossRefGoogle Scholar
  90. 90.
    Ushmorov A, Leithauser F, Sakk O, et al. Epigenetic processes play a major role in B-cell-specific gene silencing in classical Hodgkin lymphoma. Blood. 2006;107:2493.PubMedCrossRefGoogle Scholar
  91. 91.
    Theil J, Laumen H, Marafioti T, et al. Defective octamer-dependent transcription is responsible for silenced immunoglobulin transcription in Reed–Sternberg cells. Blood. 2001;97:3191.PubMedCrossRefGoogle Scholar
  92. 92.
    Laumen H, Nielsen PJ, Wirth T. The BOB.1/OBF.1 co-activator is essential for octamer-dependent transcription in B cells. Eur J Immunol. 2000;30:458.PubMedCrossRefGoogle Scholar
  93. 93.
    Yamamoto H, Kihara-Negishi F, Yamada T, et al. Physical and functional interactions between the transcription factor PU.1 and the coactivator CBP. Oncogene. 1999;18:1495.PubMedCrossRefGoogle Scholar
  94. 94.
    Torlakovic E, Tierens A, Dang HD, Delabie J. The transcription factor PU.1, necessary for B-cell development is expressed in lymphocyte predominance, but not classical Hodgkin’s disease. Am J Pathol. 2001;159:1807.PubMedGoogle Scholar
  95. 95.
    Jundt F, Kley K, Anagnostopoulos I, et al. Loss of PU.1 expression is associated with defective immunoglobulin transcription in Hodgkin and Reed–Sternberg cells of classical Hodgkin disease. Blood. 2002;99:3060.PubMedCrossRefGoogle Scholar
  96. 96.
    Hertel CB, Zhou XG, Hamilton-Dutoit SJ, Junker S. Loss of B cell identity correlates with loss of B cell-specific transcription factors in Hodgkin/Reed–Sternberg cells of classical Hodgkin lymphoma. Oncogene. 2002;21:4908.PubMedCrossRefGoogle Scholar
  97. 97.
    Mathas S, Janz M, Hummel F, et al. Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma. Nat Immunol. 2006;7:207.PubMedCrossRefGoogle Scholar
  98. 98.
    Jundt F, Anagnostopoulos I, Forster R, et al. Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood. 2002;99:3398.PubMedCrossRefGoogle Scholar
  99. 99.
    Radtke F, Wilson A, Mancini SJ, MacDonald HR. Notch regulation of lymphocyte development and function. Nat Immunol. 2004;5:247.PubMedCrossRefGoogle Scholar
  100. 100.
    Schneider EM, Torlakovic E, Stuhler A, et al. The early transcription factor GATA-2 is expressed in classical Hodgkin’s lymphoma. J Pathol. 2004;204:538.PubMedCrossRefGoogle Scholar
  101. 101.
    Chiu A, Xu W, He B, et al. Hodgkin lymphoma cells express TACI and BCMA receptors and generate survival and proliferation signals in response to BAFF and APRIL. Blood. 2007;109:729.PubMedCrossRefGoogle Scholar
  102. 102.
    Annunziata CM, Safiran YJ, Irving SG, et al. Hodgkin disease: pharmacologic intervention of the CD40-NF kappa B pathway by a protease inhibitor. Blood. 2000;96:2841.PubMedGoogle Scholar
  103. 103.
    Horie R, Watanabe T, Morishita Y, et al. Ligand-independent signaling by overexpressed CD30 drives NF-kappaB activation in Hodgkin–Reed–Sternberg cells. Oncogene. 2002;21:2493.PubMedCrossRefGoogle Scholar
  104. 104.
    Fiumara P, Snell V, Li Y, et al. Functional expression of receptor activator of nuclear factor kappaB in Hodgkin disease cell lines. Blood. 2001;98:2784.PubMedCrossRefGoogle Scholar
  105. 105.
    Rodig SJ, Savage KJ, Nguyen V, et al. TRAF1 expression and c-Rel activation are useful adjuncts in distinguishing classical Hodgkin lymphoma from a subset of morphologically or immunophenotypically similar lymphomas. Am J Surg Pathol. 2005;29:196.PubMedCrossRefGoogle Scholar
  106. 106.
    Zheng B, Fiumara P, Li YV, et al. MEK/ERK pathway is aberrantly active in Hodgkin disease: a signaling pathway shared by CD30, CD40, and RANK that regulates cell proliferation and survival. Blood. 2003;102:1019.PubMedCrossRefGoogle Scholar
  107. 107.
    Dutton A, Reynolds GM, Dawson CW, et al. Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin’s lymphoma cells through a mechanism involving Akt kinase and mTOR. J Pathol. 2005;205:498.PubMedCrossRefGoogle Scholar
  108. 108.
    Nagel S, Burek C, Venturini L, et al. Comprehensive analysis of homeobox genes in Hodgkin lymphoma cell lines identifies dysregulated expression of HOXB9 mediated via ERK5 signaling and BMI1. Blood. 2007;109:3015.PubMedGoogle Scholar
  109. 109.
    Re D, Hofmann A, Wolf J, et al. Cultivated H-RS cells are resistant to CD95L-mediated apoptosis despite expression of wild-type CD95. Exp Hematol. 2000;28:348.CrossRefGoogle Scholar
  110. 110.
    Messineo C, Jamerson MH, Hunter E, et al. Gene expression by single Reed–Sternberg cells: pathways of apoptosis and activation. Blood. 1998;91:2443.PubMedGoogle Scholar
  111. 111.
    Thomas RK, Kallenborn A, Wickenhauser C, et al. Constitutive expression of c-FLIP in Hodgkin and Reed–Sternberg cells. Am J Pathol. 2002;160:1521.PubMedGoogle Scholar
  112. 112.
    Dutton A, O’Neil JD, Milner AE, et al. Expression of the cellular FLICE-inhibitory protein (c-FLIP) protects Hodgkin’s lymphoma cells from autonomous Fas-mediated death. Proc Natl Acad Sci U S A. 2004;101:6611.PubMedCrossRefGoogle Scholar
  113. 113.
    Kashkar H, Haefs C, Shin H, et al. XIAP-mediated caspase inhibition in Hodgkin’s lymphoma-derived B cells. J Exp Med. 2003;198:341.PubMedCrossRefGoogle Scholar
  114. 114.
    Kube D, Holtick U, Vockerodt M, et al. STAT3 is constitutively activated in Hodgkin cell lines. Blood. 2001;98:762.PubMedCrossRefGoogle Scholar
  115. 115.
    Skinnider BF, Elia AJ, Gascoyne RD, et al. Signal transducer and activator of transcription 6 is frequently activated in Hodgkin and Reed–Sternberg cells of Hodgkin lymphoma. Blood. 2002;99:618.PubMedCrossRefGoogle Scholar
  116. 116.
    Scheeren FA, Diehl SA, Smit LA, et al. IL-21 is expressed in Hodgkin Lymphoma and activates STAT5; evidence that activated STAT5 is required for Hodgkin Lymphomagenesis. Blood. 2008;111:4706-4715.PubMedCrossRefGoogle Scholar
  117. 117.
    Renne C, Willenbrock K, Kuppers R, et al. Autocrine- and paracrine-activated receptor tyrosine kinases in classic Hodgkin lymphoma. Blood. 2005;105:4051.PubMedCrossRefGoogle Scholar
  118. 118.
    Renne C, Willenbrock K, Martin-Subero JI, et al. High expression of several tyrosine kinases and activation of the PI3K/AKT pathway in mediastinal large B cell lymphoma reveals further similarities to Hodgkin lymphoma. Leukemia. 2007;21:780.PubMedCrossRefGoogle Scholar
  119. 119.
    Teofili L, Di Febo AL, Pierconti F, et al. Expression of the c-met proto-oncogene and its ligand, hepatocyte growth factor, in Hodgkin disease. Blood. 2001;97:1063.PubMedCrossRefGoogle Scholar
  120. 120.
    Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001;411:355.PubMedCrossRefGoogle Scholar
  121. 121.
    Helt CE, Cliby WA, Keng PC, et al. Ataxia telangiectasia mutated (ATM) and ATM and Rad3-related protein exhibit selective target specificities in response to different forms of DNA damage. J Biol Chem. 2005;280:1186.PubMedCrossRefGoogle Scholar
  122. 122.
    Bose S, Starczynski J, Chukwuma M, et al. Down-regulation of ATM protein in HRS cells of nodular sclerosis Hodgkin’s lymphoma in children occurs in the absence of ATM gene inactivation. J Pathol. 2007;213:329.PubMedCrossRefGoogle Scholar
  123. 123.
    Liu A, Takakuwa T, Fujita S, et al. ATR alterations in Hodgkin’s lymphoma. Oncol Rep. 2008;19:999.PubMedGoogle Scholar
  124. 124.
    Stamatoullas A, Picquenot JM, Dumesnil C, et al. Conventional cytogenetics of nodular lymphocyte-predominant Hodgkin’s lymphoma. Leukemia. 2007;21:2064.PubMedCrossRefGoogle Scholar
  125. 125.
    Wlodarska I, Stul M, DeWolf-Peeters C, Hagemeijer A. Heterogeneity of BCL6 rearrangements in nodular lymphocyte predominant Hodgkin’s lymphoma. Haematologica. 2004;89:965.PubMedGoogle Scholar
  126. 126.
    Renne C, Martin-Subero JI, Hansmann ML, Siebert R. Molecular cytogenetic analyses of immunoglobulin loci in nodular lymphocyte predominant Hodgkin’s lymphoma reveal a recurrent IGH-BCL6 juxtaposition. J Mol Diagn. 2005;7:352.PubMedGoogle Scholar
  127. 127.
    Franke S, Wlodarska I, Maes B, et al. Lymphocyte predominance Hodgkin disease is characterized by recurrent genomic imbalances. Blood. 2001;97:1845.PubMedCrossRefGoogle Scholar
  128. 128.
    Atayar C, Kok K, Kluiver J, et al. BCL6 alternative breakpoint region break and homozygous deletion of 17q24 in the nodular lymphocyte predominance type of Hodgkin’s lymphoma-derived cell line DEV. Hum Pathol. 2006;37:675.PubMedCrossRefGoogle Scholar
  129. 129.
    Roullet MR, Bagg A. Recent insights into the biology of Hodgkin lymphoma: unraveling the mysteries of the Reed–Sternberg cell. Expert Rev Mol Diagn. 2007;7:805.PubMedCrossRefGoogle Scholar
  130. 130.
    Franklin J, Pluetschow A, Paus M, et al. Second malignancy risk associated with treatment of Hodgkin’s lymphoma: meta-analysis of the randomised trials. Ann Oncol. 2006;17:1749.PubMedCrossRefGoogle Scholar
  131. 131.
    Sup SJ, Alemany CA, Pohlman B, et al. Expression of bcl-2 in classical Hodgkin’s lymphoma: an independent predictor of poor outcome. J Clin Oncol. 2005;23:3773.PubMedCrossRefGoogle Scholar
  132. 132.
    Diepstra A, Imhoff GW, Karim-Kos HE, et al. HLA class II expression by Hodgkin’s Reed–Sternberg cells is an independent prognostic factor in classical Hodgkin’s lymphoma. J Clin Oncol. 2007;25:3101-3108.PubMedCrossRefGoogle Scholar
  133. 133.
    Martini M, Hohaus S, Petrucci G, et al. Phosphorylated STAT5 represents a new possible prognostic marker in Hodgkin lymphoma. Am J Clin Pathol. 2008;129:472.PubMedCrossRefGoogle Scholar
  134. 134.
    Willenbrock K, Kuppers R, Renne C, et al. Common features and differences in the transcriptome of large cell anaplastic lymphoma and classical Hodgkin’s lymphoma. Haematologica. 2006;91:596.PubMedGoogle Scholar
  135. 135.
    Niens M, Visser L, Nolte IM, et al. Serum chemokine levels in Hodgkin lymphoma patients: highly increased levels of CCL17 and CCL22. Br J Haematol. 2008;140:527.PubMedCrossRefGoogle Scholar
  136. 136.
    Casasnovas RO, Mounier N, Brice P, et al. Plasma cytokine and soluble receptor signature predicts outcome of patients with classical Hodgkin’s lymphoma: a study from the Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol. 2007;25:1732.PubMedCrossRefGoogle Scholar
  137. 137.
    Tecchio C, Nadali G, Scapini P, et al. High serum levels of B-lymphocyte stimulator are associated with clinical-pathological features and outcome in classical Hodgkin lymphoma. Br J Haematol. 2007;137:553.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Michele Roullet
    • 1
  • Adam Bagg
    • 2
  1. 1.Department of Pathology and anatomyPathology Sciences Medical Group/Eastern Virginia Medical SchoolNorfolkUSA
  2. 2.Department of Pathology and Laboratory MedicineHospital of the University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations