Precursor T-Cell Neoplasms

  • Kim De Keersmaecker
  • Adolfo Ferrando
Part of the Molecular Pathology Library book series (MPLB, volume 4)


Precursor T-cell lymphoblastic leukemias and lymphomas represent 15% of childhood acute lymphoblastic leukemias (ALLs) and one third of pediatric non-Hodgkin lymphomas, respectively. T-cell ALLs are characterized by prominent (>30%) bone marrow (BM) infiltration with or without mediastinal mass, while T-cell lymphoblastic lymphomas show mediastinal masses in the context of limited or no BM involvement. These two clinical entities share a similar spectrum of molecular and cytogenetic abnormalities, and most probably represent different manifestations of the same disease, commonly designated here as T-ALL.


Chronic Myeloid Leukemia NOTCH1 Signaling Minimal Residual Disease Fusion Transcript HOXA Cluster Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aifantis I, Raetz E, Buonamici S. Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol. 2008;8(5):380–390.PubMedCrossRefGoogle Scholar
  2. 2.
    Ferrando AA, Look AT. Clinical implications of recurring chromosomal and associated molecular abnormalities in acute lymphoblastic leukemia. Semin Hematol. 2000;37(4):381–395.PubMedCrossRefGoogle Scholar
  3. 3.
    Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269–271.PubMedCrossRefGoogle Scholar
  4. 4.
    Lee SY, Kumano K, Masuda S, et al. Mutations of the Notch1 gene in T-cell acute lymphoblastic leukemia: analysis in adults and children. Leukemia. 2005;19(10):1841–1843.PubMedCrossRefGoogle Scholar
  5. 5.
    Breit S, Stanulla M, Flohr T, et al. Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. Blood. 2006;108(4):1151–1157.PubMedCrossRefGoogle Scholar
  6. 6.
    Cayuela JM, Madani A, Sanhes L, Stern MH, Sigaux F. Multiple tumor-suppressor gene 1 inactivation is the most frequent genetic alteration in T-cell acute lymphoblastic leukemia. Blood. 1996;87(6):2180–2186.PubMedGoogle Scholar
  7. 7.
    Hebert J, Cayuela JM, Berkeley J, Sigaux F. Candidate tumor-suppressor genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from T- but not from B-cell lineage acute lymphoblastic leukemias. Blood. 1994;84(12):4038–4044.PubMedGoogle Scholar
  8. 8.
    Ferrando AA, Neuberg DS, Staunton J, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell. 2002;1(1):75–87.PubMedCrossRefGoogle Scholar
  9. 9.
    Finger LR, Kagan J, Christopher G, et al. Involvement of the TCL5 gene on human chromosome 1 in T-cell leukemia and melanoma. Proc Natl Acad Sci USA. 1989;86(13):5039–5043.PubMedCrossRefGoogle Scholar
  10. 10.
    Begley CG, Aplan PD, Davey MP, et al. Chromosomal translocation in a human leukemic stem-cell line disrupts the T-cell antigen receptor delta-chain diversity region and results in a previously unreported fusion transcript. Proc Natl Acad Sci USA. 1989;86(6):2031–2035.PubMedCrossRefGoogle Scholar
  11. 11.
    Chen Q, Cheng JT, Tasi LH, et al. The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix-loop-helix protein. EMBO J. 1990;9(2):415–424.PubMedGoogle Scholar
  12. 12.
    Bernard O, Guglielmi P, Jonveaux P, et al. Two distinct mechanisms for the SCL gene activation in the t(1;14) translocation of T-cell leukemias. Genes Chromosomes Cancer. 1990;1(3):194–208.PubMedCrossRefGoogle Scholar
  13. 13.
    Xia Y, Brown L, Yang CY, et al. TAL2, a helix-loop-helix gene activated by the (7;9)(q34;q32) translocation in human T-cell leukemia. Proc Natl Acad Sci USA. 1991;88(24):11416–11420.PubMedCrossRefGoogle Scholar
  14. 14.
    Mellentin JD, Smith SD, Cleary ML. lyl-1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif. Cell. 1989;58(1):77–83.PubMedCrossRefGoogle Scholar
  15. 15.
    Wang J, Jani-Sait SN, Escalon EA, et al. The t(14;21)(q11.2;q22) chromosomal translocation associated with T-cell acute lymphoblastic leukemia activates the BHLHB1 gene. Proc Natl Acad Sci USA. 2000;97(7):3497–3502.PubMedCrossRefGoogle Scholar
  16. 16.
    McGuire EA, Hockett RD, Pollock KM, Bartholdi MF, O’Brien SJ, Korsmeyer SJ. The t(11;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein. Mol Cell Biol. 1989;9(5):2124–2132.PubMedGoogle Scholar
  17. 17.
    Greenberg JM, Boehm T, Sofroniew MV, et al. Segmental and developmental regulation of a presumptive T-cell oncogene in the central nervous system. Nature. 1990;344(6262):158–160.PubMedCrossRefGoogle Scholar
  18. 18.
    Boehm T, Foroni L, Kaneko Y, Perutz MF, Rabbitts TH. The rhombotin family of cysteine-rich LIM-domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc Natl Acad Sci USA. 1991;88(10):4367–4371.PubMedCrossRefGoogle Scholar
  19. 19.
    Royer-Pokora B, Loos U, Ludwig WD. TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11;14)(p13;q11). Oncogene. 1991;6(10):1887–1893.PubMedGoogle Scholar
  20. 20.
    Warren AJ, Colledge WH, Carlton MB, Evans MJ, Smith AJ, Rabbitts TH. The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell. 1994;78(1):45–57.PubMedCrossRefGoogle Scholar
  21. 21.
    Dube ID, Kamel-Reid S, Yuan CC, et al. A novel human homeobox gene lies at the chromosome 10 breakpoint in lymphoid neoplasias with chromosomal translocation t(10;14). Blood. 1991;78(11):2996–3003.PubMedGoogle Scholar
  22. 22.
    Hatano M, Roberts CW, Minden M, Crist WM, Korsmeyer SJ. Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. Science. 1991;253(5015):79–82.PubMedCrossRefGoogle Scholar
  23. 23.
    Lu M, Gong ZY, Shen WF, Ho AD. The tcl-3 proto-oncogene altered by chromosomal translocation in T-cell leukemia codes for a homeobox protein. EMBO J. 1991;10(10):2905–2910.PubMedGoogle Scholar
  24. 24.
    Kennedy MA, Gonzalez-Sarmiento R, Kees UR, et al. HOX11, a homeobox-containing T-cell oncogene on human chromosome 10q24. Proc Natl Acad Sci USA. 1991;88(20):8900–8904.PubMedCrossRefGoogle Scholar
  25. 25.
    Bernard OA, Busson-LeConiat M, Ballerini P, et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia. 2001;15(10):1495–1504.PubMedCrossRefGoogle Scholar
  26. 26.
    Nagel S, Kaufmann M, Drexler HG, MacLeod RA. The cardiac homeobox gene NKX2–5 is deregulated by juxtaposition with BCL11B in pediatric T-ALL cell lines via a novel t(5;14)(q35.1;q32.2). Cancer Res. 2003;63(17):5329–5334.PubMedGoogle Scholar
  27. 27.
    Przybylski GK, Dik WA, Grabarczyk P, et al. The effect of a novel recombination between the homeobox gene NKX2–5 and the TRD locus in T-cell acute lymphoblastic leukemia on activation of the NKX2–5 gene. Haematologica. 2006;91(3):317–321.PubMedGoogle Scholar
  28. 28.
    Soulier J, Clappier E, Cayuela JM, et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood. 2005;106(1):274–286.PubMedCrossRefGoogle Scholar
  29. 29.
    Speleman F, Cauwelier B, Dastugue N, et al. A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias. Leukemia. 2005;19(3):358–366.PubMedCrossRefGoogle Scholar
  30. 30.
    Shima EA, Le Beau MM, McKeithan TW, et al. Gene encoding the alpha chain of the T-cell receptor is moved immediately downstream of c-myc in a chromosomal 8;14 translocation in a cell line from a human T-cell leukemia. Proc Natl Acad Sci USA. 1986;83(10):3439–3443.PubMedCrossRefGoogle Scholar
  31. 31.
    Erikson J, Finger L, Sun L, et al. Deregulation of c-myc by translocation of the alpha-locus of the T-cell receptor in T-cell leukemias. Science. 1986;232(4752):884–886.PubMedCrossRefGoogle Scholar
  32. 32.
    Urashima M, Iyori H, Fujisawa K, Hoshi Y, Akatsuka J, Maekawa K. Establishment and characteristics of a T-cell acute lymphoblastic leukemia cell line, JK-T1, with a chromosomal translocation between 8q24 and 14q13. Cancer Genet Cytogenet. 1992;64(1):86–90.PubMedCrossRefGoogle Scholar
  33. 33.
    Inaba T, Murakami S, Oku N, et al. Translocation between chromosomes 8q24 and 14q11 in T-cell acute lymphoblastic leukemia. Cancer Genet Cytogenet. 1990;49(1):69–74.PubMedCrossRefGoogle Scholar
  34. 34.
    Shima-Rich EA, Harden AM, McKeithan TW, Rowley JD, Diaz MO. Molecular analysis of the t(8;14)(q24;q11) chromosomal breakpoint junctions in the T-cell leukemia line MOLT-16. Genes Chromosomes Cancer. 1997;20(4):363–371.PubMedCrossRefGoogle Scholar
  35. 35.
    Clappier E, Cuccuini W, Kalota A, et al. The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. Blood. 2007;110(4):1251–1261.PubMedCrossRefGoogle Scholar
  36. 36.
    Ellisen LW, Bird J, West DC, et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991;66(4):649–661.PubMedCrossRefGoogle Scholar
  37. 37.
    Cauwelier B, Cave H, Gervais C, et al. Clinical, cytogenetic and molecular characteristics of 14 T-ALL patients carrying the TCRbeta-HOXA rearrangement: a study of the Groupe Francophone de Cytogenetique Hematologique. Leukemia. 2007;21(1):121–128.PubMedCrossRefGoogle Scholar
  38. 38.
    De Keersmaecker K, Graux C, Odero MD, et al. Fusion of EML1 to ABL1 in T-cell acute lymphoblastic leukemia with cryptic t(9;14)(q34;q32). Blood. 2005;105(12):4849–4852.PubMedCrossRefGoogle Scholar
  39. 39.
    Aplan PD, Lombardi DP, Ginsberg AM, Cossman J, Bertness VL, Kirsch IR. Disruption of the human SCL locus by “illegitimate” V-(D)-J recombinase activity. Science. 1990;250(4986):1426–1429.PubMedCrossRefGoogle Scholar
  40. 40.
    Van Vlierberghe P, van Grotel M, Beverloo HB, et al. The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LM02 in pediatric T-cell acute lymphoblastic leukemia. Blood. 2006;108(10):3520–3529.PubMedCrossRefGoogle Scholar
  41. 41.
    Ferrando AA, Herblot S, Palomero T, et al. Biallelic transcriptional activation of oncogenic transcription factors in T-cell acute lymphoblastic leukemia. Blood. 2004;103(5):1909–1911.PubMedCrossRefGoogle Scholar
  42. 42.
    Bash RO, Hall S, Timmons CF, et al. Does activation of the TAL1 gene occur in a majority of patients with T-cell acute lymphoblastic leukemia? A pediatric oncology group study. Blood. 1995;86(2):666–676.PubMedGoogle Scholar
  43. 43.
    Ferrando AA, Look AT. Gene expression profiling in T-cell acute lymphoblastic leukemia. Semin Hematol. 2003;40(4):274–280.PubMedCrossRefGoogle Scholar
  44. 44.
    Dreyling MH, Martinez-Climent JA, Zheng M, Mao J, Rowley JD, Bohlander SK. The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family. Proc Natl Acad Sci USA. 1996;93(10):4804–4809.PubMedCrossRefGoogle Scholar
  45. 45.
    Carlson KM, Vignon C, Bohlander S, Martinez-Climent JA, Le Beau MM, Rowley JD. Identification and molecular characterization of CALM/AF10fusion products in T cell acute lymphoblastic leukemia and acute myeloid leukemia. Leukemia. 2000;14(1):100–104.PubMedCrossRefGoogle Scholar
  46. 46.
    Asnafi V, Radford-Weiss I, Dastugue N, et al. CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRgammadelta lineage. Blood. 2003;102(3):1000–1006.PubMedCrossRefGoogle Scholar
  47. 47.
    Chervinsky DS, Sait SN, Nowak NJ, Shows TB, Aplan PD. Complex MLL rearrangement in a patient with T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer. 1995;14(1):76–84.PubMedCrossRefGoogle Scholar
  48. 48.
    Rubnitz JE, Behm FG, Curcio-Brint AM, et al. Molecular analysis of t(11;19) breakpoints in childhood acute leukemias. Blood. 1996;87(11):4804–4808.PubMedGoogle Scholar
  49. 49.
    Van Vlierberghe P, van Grotel M, Tchinda J, et al. The recurrent SET-NUP214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia. Blood. 2008;111(9):4668–4680.PubMedCrossRefGoogle Scholar
  50. 50.
    Hussey DJ, Nicola M, Moore S, Peters GB, Dobrovic A. The (4;11)(q21;p15) translocation fuses the NUP98 and RAP1GDS1 genes and is recurrent in T-cell acute lymphocytic leukemia. Blood. 1999;94(6):2072–2079.PubMedGoogle Scholar
  51. 51.
    Mecucci C, La Starza R, Negrini M, et al. t(4;11)(q21;p15) translocation involving NUP98 and RAP1GDS1 genes: characterization of a new subset of T acute lymphoblastic leukaemia. Br J Haematol. 2000;109(4):788–793.PubMedCrossRefGoogle Scholar
  52. 52.
    Tycko B, Smith SD, Sklar J. Chromosomal translocations joining LCK and TCRB loci in human T cell leukemia. J Exp Med. 1991;174(4):867–873.PubMedCrossRefGoogle Scholar
  53. 53.
    Clappier E, Cuccuini W, Cayuela JM, et al. Cyclin D2 dysregulation by chromosomal translocations to TCR loci in T-cell acute lymphoblastic leukemias. Leukemia. 2006;20(1):82–86.PubMedCrossRefGoogle Scholar
  54. 54.
    Karrman K, Andersson A, Bjorgvinsdottir H, et al. Deregulation of cyclin D2 by juxtaposition with T-cell receptor alpha/delta locus in t(12;14)(p13;q11)-positive childhood T-cell acute lymphoblastic leukemia. Eur J Haematol. 2006;77(1):27–34.PubMedCrossRefGoogle Scholar
  55. 55.
    Flex E, Petrangeli V, Stella L, et al. Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia. J Exp Med. 2008;205(4):751–758.PubMedCrossRefGoogle Scholar
  56. 56.
    Graux C, Cools J, Melotte C, et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet. 2004;36(10):1084–1089.PubMedCrossRefGoogle Scholar
  57. 57.
    Bar-Eli M, Ahuja H, Foti A, Cline MJ. N-RAS mutations in T-cell acute lymphocytic leukaemia: analysis by direct sequencing detects a novel mutation. Br J Haematol. 1989;72(1):36–39.PubMedCrossRefGoogle Scholar
  58. 58.
    Kawamura M, Ohnishi H, Guo SX, et al. Alterations of the p53, p21, p16, p15 and RAS genes in childhood T-cell acute lymphoblastic leukemia. Leuk Res. 1999;23(2):115–126.PubMedCrossRefGoogle Scholar
  59. 59.
    Balgobind BV, Van Vlierberghe P, van den Ouweland AM, et al. Leukemia-associated NF1 inactivation in patients with pediatric T-ALL and AML lacking evidence for neurofibromatosis. Blood. 2008;111(8):4322–4328.PubMedCrossRefGoogle Scholar
  60. 60.
    Palomero T, Sulis ML, Cortina M, et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med. 2007;13(10):1203–1210.PubMedCrossRefGoogle Scholar
  61. 61.
    Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol. 2006;7(9):678–689.PubMedCrossRefGoogle Scholar
  62. 62.
    Aster JC, Pear WS, Blacklow SC. Notch signaling in leukemia. Annu Rev Pathol. 2008;3:587–613.PubMedCrossRefGoogle Scholar
  63. 63.
    Greenwald I. LIN-12/Notch signaling: lessons from worms and flies. Genes Dev. 1998;12(12):1751–1762.PubMedCrossRefGoogle Scholar
  64. 64.
    Maillard I, Pear WS. Notch and cancer: best to avoid the ups and downs. Cancer Cell. 2003;3(3):203–205.PubMedCrossRefGoogle Scholar
  65. 65.
    Radtke F, Wilson A, Mancini SJ, MacDonald HR. Notch regulation of lymphocyte development and function. Nat Immunol. 2004;5(3):247–253.PubMedCrossRefGoogle Scholar
  66. 66.
    Jaleco AC, Neves H, Hooijberg E, et al. Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation. J Exp Med. 2001;194(7):991–1002.PubMedCrossRefGoogle Scholar
  67. 67.
    Pear WS, Radtke F. Notch signaling in lymphopoiesis. Semin Immunol. 2003;15(2):69–79.PubMedCrossRefGoogle Scholar
  68. 68.
    Pui JC, Allman D, Xu L, et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity. 1999;11(3):299–308.PubMedCrossRefGoogle Scholar
  69. 69.
    Radtke F, Wilson A, Stark G, et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity. 1999;10(5):547–558.PubMedCrossRefGoogle Scholar
  70. 70.
    Schmitt TM, Ciofani M, Petrie HT, Zuniga-Pflucker JC. Maintenance of T cell specification and differentiation requires recurrent notch receptor-ligand interactions. J Exp Med. 2004;200(4):469–479.PubMedCrossRefGoogle Scholar
  71. 71.
    Brou C, Logeat F, Gupta N, et al. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell. 2000;5(2):207–216.PubMedCrossRefGoogle Scholar
  72. 72.
    Mumm JS, Schroeter EH, Saxena MT, et al. A ligand-induced extracellular cleavage regulates gamma(gamma)-secretase-like proteolytic activation of Notch1. Mol Cell. 2000;5(2):197–206.PubMedCrossRefGoogle Scholar
  73. 73.
    Lundkvist J, Naslund J. Gamma(gamma)-secretase: a complex target for Alzheimer’s disease. Curr Opin Pharmacol. 2007;7(1):112–118.PubMedCrossRefGoogle Scholar
  74. 74.
    Haffner C, Haass C. Cellular functions of gamma(gamma)-secretase-related proteins. Neurodegener Dis. 2006;3(4–5):284–289.PubMedCrossRefGoogle Scholar
  75. 75.
    Schroeter EH, Kisslinger JA, Kopan R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature. 1998;393(6683):382–386.PubMedCrossRefGoogle Scholar
  76. 76.
    Fryer CJ, White JB, Jones KA. Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell. 2004;16(4):509–520.PubMedCrossRefGoogle Scholar
  77. 77.
    Lai EC. Protein degradation: four E3s for the notch pathway. Curr Biol. 2002;12(2):R74–R78.PubMedCrossRefGoogle Scholar
  78. 78.
    Weinmaster G, Kintner C. Modulation of notch signaling during somitogenesis. Annu Rev Cell Dev Biol. 2003;19:367–395.PubMedCrossRefGoogle Scholar
  79. 79.
    Sulis ML, Williams O, Palomero T, et al. NOTCH1 extracellular juxtamembrane expansion mutations in T-ALL. Blood. 2008;112(3):733–740.PubMedCrossRefGoogle Scholar
  80. 80.
    Thompson BJ, Buonamici S, Sulis ML, et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med. 2007;204(8):1825–1835.PubMedCrossRefGoogle Scholar
  81. 81.
    O’Neil J, Grim J, Strack P, et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma(gamma)-secretase inhibitors. J Exp Med. 2007;204(8):1813–1824.PubMedCrossRefGoogle Scholar
  82. 82.
    Malyukova A, Dohda T, von der Lehr N, et al. The tumor suppressor gene hCDC4 is frequently mutated in human T-cell acute lymphoblastic leukemia with functional consequences for Notch signaling. Cancer Res. 2007;67(12):5611–5616.PubMedCrossRefGoogle Scholar
  83. 83.
    Akhoondi S, Sun D, von der Lehr N, et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res. 2007;67(19):9006–9012.PubMedCrossRefGoogle Scholar
  84. 84.
    Welcker M, Clurman BE. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer. 2008;8(2):83–93.PubMedCrossRefGoogle Scholar
  85. 85.
    Eguchi-Ishimae M, Eguchi M, Kempski H, Greaves M. NOTCH1 mutation can be an early, prenatal genetic event in T-ALL. Blood. 2008;111(1):376–378.PubMedCrossRefGoogle Scholar
  86. 86.
    Mansour MR, Duke V, Foroni L, et al. Notch-1 mutations are secondary events in some patients with T-cell acute lymphoblastic leukemia. Clin Cancer Res. 2007;13(23):6964–6969.PubMedCrossRefGoogle Scholar
  87. 87.
    Lewis HD, Leveridge M, Strack PR, et al. Apoptosis in T cell acute lymphoblastic leukemia cells after cell cycle arrest induced by pharmacological inhibition of notch signaling. Chem Biol. 2007;14(2):209–219.PubMedCrossRefGoogle Scholar
  88. 88.
    De Keersmaecker K, Lahortiga I, Mentens N, et al. In vitro validation of gamma-secretase inhibitors alone or in combi­nation with other anti-cancer drugs for the treatment of T-cell acute lymphoblastic leukemia. Haematologica. 2008;93(4):533–542.PubMedCrossRefGoogle Scholar
  89. 89.
    Palomero T, Barnes KC, Real PJ, et al. CUTLL1, a novel human T-cell lymphoma cell line with t(7;9) rearrangement, aberrant NOTCH1 activation and high sensitivity to gamma(gamma)-secretase inhibitors. Leukemia. 2006;20(7):1279–1287.PubMedCrossRefGoogle Scholar
  90. 90.
    Palomero T, Lim WK, Odom DT, et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA. 2006;103(48):18261–18266.PubMedCrossRefGoogle Scholar
  91. 91.
    Deangelo D, Stone R, Silverman L, Stock W, Attar E, Fearen I, et al. A phase I clinical trial of the notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and other leukemias. J Clin Oncol, 2006 ASCO Annual Meeting Proceedings Part I 2006 June 20 Supplement; 24(18S):6585.Google Scholar
  92. 92.
    Massari ME, Murre C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol. 2000;20(2):429–440.PubMedCrossRefGoogle Scholar
  93. 93.
    Elefanty AG, Begley CG, Hartley L, Papaevangeliou B, Robb L. SCL expression in the mouse embryo detected with a targeted lacZ reporter gene demonstrates its localization to hematopoietic, vascular, and neural tissues. Blood. 1999;94(11):3754–3763.PubMedGoogle Scholar
  94. 94.
    Carroll AJ, Crist WM, Link MP, et al. The t(1;14)(p34;q11) is nonrandom and restricted to T-cell acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood. 1990;76(6):1220–1224.PubMedGoogle Scholar
  95. 95.
    Kelliher MA, Seldin DC, Leder P. Tal-1 induces T cell acute lymphoblastic leukemia accelerated by casein kinase IIalpha. EMBO J. 1996;15(19):5160–5166.PubMedGoogle Scholar
  96. 96.
    Condorelli GL, Facchiano F, Valtieri M, et al. T-cell-directed TAL-1 expression induces T-cell malignancies in transgenic mice. Cancer Res. 1996;56(22):5113–5119.PubMedGoogle Scholar
  97. 97.
    Ono Y, Fukuhara N, Yoshie O. TAL1 and LIM-only proteins synergistically induce retinaldehyde dehydrogenase 2 expression in T-cell acute lymphoblastic leukemia by acting as cofactors for GATA3. Mol Cell Biol. 1998;18(12):6939–6950.PubMedGoogle Scholar
  98. 98.
    O’Neil J, Shank J, Cusson N, Murre C, Kelliher M. TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB. Cancer Cell. 2004;5(6):587–596.PubMedCrossRefGoogle Scholar
  99. 99.
    Baer R. TAL1, TAL2 and LYL1: a family of basic helix-loop-helix proteins implicated in T cell acute leukaemia. Semin Cancer Biol. 1993;4(6):341–347.PubMedGoogle Scholar
  100. 100.
    Sanchez-Garcia I, Rabbitts TH. LIM domain proteins in leukaemia and development. Semin Cancer Biol. 1993;4(6):349–358.PubMedGoogle Scholar
  101. 101.
    Valge-Archer VE, Osada H, Warren AJ, et al. The LIM protein RBTN2 and the basic helix-loop-helix protein TAL1 are present in a complex in erythroid cells. Proc Natl Acad Sci USA. 1994;91(18):8617–8621.PubMedCrossRefGoogle Scholar
  102. 102.
    Larson RC, Lavenir I, Larson TA, et al. Protein dimerization between Lm02 (Rbtn2) and Ta11 alters thymocyte development and potentiates T cell tumorigenesis in transgenic mice. EMBO J. 1996;15(5):1021–1027.PubMedGoogle Scholar
  103. 103.
    Fisch P, Boehm T, Lavenir I, et al. T-cell acute lymphoblastic lymphoma induced in transgenic mice by the RBTN1 and RBTN2 LIM-domain genes. Oncogene. 1992;7(12):2389–2397.PubMedGoogle Scholar
  104. 104.
    McGuire EA, Rintoul CE, Sclar GM, Korsmeyer SJ. Thymic overexpression of Ttg-1 in transgenic mice results in T-cell acute lymphoblastic leukemia/lymphoma. Mol Cell Biol. 1992;12(9):4186–4196.PubMedGoogle Scholar
  105. 105.
    Aplan PD, Jones CA, Chervinsky DS, et al. An scl gene product lacking the transactivation domain induces bony abnormalities and cooperates with LM01 to generate T-cell malignancies in transgenic mice. EMBO J. 1997;16(9):2408–2419.PubMedCrossRefGoogle Scholar
  106. 106.
    Mark M, Rijli FM, Chambon P. Homeobox genes in embryogenesis and pathogenesis. Pediatr Res. 1997;42(4):421–429.PubMedCrossRefGoogle Scholar
  107. 107.
    Buske C, Humphries RK. Homeobox genes in leukemogenesis. Int J Hematol. 2000;71(4):301–308.PubMedGoogle Scholar
  108. 108.
    Dear TN, Sanchez-Garcia I, Rabbitts TH. The HOX11 gene encodes a DNA-binding nuclear transcription factor belonging to a distinct family of homeobox genes. Proc Natl Acad Sci USA. 1993;90(10):4431–4435.PubMedCrossRefGoogle Scholar
  109. 109.
    Ferrando AA, Neuberg DS, Dodge RK, et al. Prognostic importance of TLX1 (HOX11) oncogene expression in adults with T-cell acute lymphoblastic leukaemia. Lancet. 2004;363(9408):535–536.PubMedCrossRefGoogle Scholar
  110. 110.
    Kees UR, Heerema NA, Kumar R, et al. Expression of HOX11 in childhood T-lineage acute lymphoblastic leukaemia can occur in the absence of cytogenetic aberration at 10q24: a study from the Children’s Cancer Group (CCG). Leukemia. 2003;17(5):887–893.PubMedCrossRefGoogle Scholar
  111. 111.
    Berger R, Dastugue N, Busson M, et al. t(5;14)/HOX11L2-positive T-cell acute lymphoblastic leukemia. A collaborative study of the Groupe Francais de Cytogenetique Hematologique (GFCH). Leukemia. 2003;17(9):1851–1857.PubMedCrossRefGoogle Scholar
  112. 112.
    Roberts CW, Shutter JR, Korsmeyer SJ. Hox11 controls the genesis of the spleen. Nature. 1994;368(6473):747–749.PubMedCrossRefGoogle Scholar
  113. 113.
    Dear TN, Colledge WH, Carlton MB, et al. The Hox11 gene is essential for cell survival during spleen development. Development. 1995;121(9):2909–2915.PubMedGoogle Scholar
  114. 114.
    MacLeod RA, Nagel S, Kaufmann M, Janssen JW, Drexler HG. Activation of HOX11L2 by juxtaposition with 3’-BCL11B in an acute lymphoblastic leukemia cell line (HPB-ALL) with t(5;14)(q35;q32.2). Genes Chromosomes Cancer. 2003;37(1):84–91.PubMedCrossRefGoogle Scholar
  115. 115.
    Mauvieux L, Leymarie V, Helias C, et al. High incidence of Hox11L2 expression in children with T-ALL. Leukemia. 2002;16(12):2417–2422.PubMedCrossRefGoogle Scholar
  116. 116.
    Ballerini P, Blaise A, Busson-Le Coniat M, et al. HOX11L2 expression defines a clinical subtype of pediatric T-ALL associated with poor prognosis. Blood. 2002;100(3):991–997.PubMedCrossRefGoogle Scholar
  117. 117.
    Shirasawa S, Arata A, Onimaru H, et al. Rnx deficiency results in congenital central hypoventilation. Nat Genet. 2000;24(3):287–290.PubMedCrossRefGoogle Scholar
  118. 118.
    Cave H, Suciu S, Preudhomme C, et al. Clinical significance of HOX11L2 expression linked to t(5;14)(q35;q32), of HOX11 expression, and of SIL-TAL fusion in childhood T-cell malignancies: results of EORTC studies 58881. Blood. 2004;103(2):442–450.PubMedCrossRefGoogle Scholar
  119. 119.
    Asnafi V, Buzyn A, Thomas X, et al. Impact of TCR status and genotype on outcome in adult T-cell acute lymphoblastic leukemia: a LALA-94 study. Blood. 2005;105(8):3072–3078.PubMedCrossRefGoogle Scholar
  120. 120.
    Martinez P, Amemiya CT. Genomics of the HOX gene cluster. Comp Biochem Physiol B Biochem Mol Biol. 2002;133(4):571–580.PubMedCrossRefGoogle Scholar
  121. 121.
    Brooke NM, Garcia-Fernandez J, Holland PW. The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature. 1998;392(6679):920–922.PubMedCrossRefGoogle Scholar
  122. 122.
    Bergeron J, Clappier E, Cauwelier B, et al. HOXA cluster deregulation in T-ALL associated with both a TCRD-HOXA and a CALM-AF10 chromosomal translocation. Leukemia. 2006;20(6):1184–1187.PubMedCrossRefGoogle Scholar
  123. 123.
    Ferrando AA, Armstrong SA, Neuberg DS, et al. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood. 2003;102(1):262–268.PubMedCrossRefGoogle Scholar
  124. 124.
    Dik WA, Brahim W, Braun C, et al. CALM-AF10+ T-ALL expression profiles are characterized by overexpression of HOXA and BMI1 oncogenes. Leukemia. 2005;19(11):1948–1957.PubMedCrossRefGoogle Scholar
  125. 125.
    Greig KT, Carotta S, Nutt SL. Critical roles for c-Myb in hematopoietic progenitor cells. Semin Immunol. 2008;20(4):247–256.PubMedCrossRefGoogle Scholar
  126. 126.
    Ramsay RG, Gonda TJ. MYB function in normal and cancer cells. Nat Rev Cancer. 2008;8(7):523–534.PubMedCrossRefGoogle Scholar
  127. 127.
    Badiani PA, Kioussis D, Swirsky DM, Lampert IA, Weston K. T-cell lymphomas in v-Myb transgenic mice. Oncogene. 1996;13(10):2205–2212.PubMedGoogle Scholar
  128. 128.
    Shen-Ong GL, Potter M, Mushinski JF, Lavu S, Reddy EP. Activation of the c-myb locus by viral insertional mutagenesis in plasmacytoid lymphosarcomas. Science. 1984;226(4678):1077–1080.PubMedCrossRefGoogle Scholar
  129. 129.
    Hwang HC, Martins CP, Bronkhorst Y, et al. Identification of oncogenes collaborating with p27Kip1 loss by insertional mutagenesis and high-throughput insertion site analysis. Proc Natl Acad Sci USA. 2002;99(17):11293–11298.PubMedCrossRefGoogle Scholar
  130. 130.
    Kanter MR, Smith RE, Hayward WS. Rapid induction of B-cell lymphomas: insertional activation of c-myb by avian leukosis virus. J Virol. 1988;62(4):1423–1432.PubMedGoogle Scholar
  131. 131.
    Kim R, Trubetskoy A, Suzuki T, Jenkins NA, Copeland NG, Lenz J. Genome-based identification of cancer genes by proviral tagging in mouse retrovirus-induced T-cell lymphomas. J Virol. 2003;77(3):2056–2062.PubMedCrossRefGoogle Scholar
  132. 132.
    Lund AH, Turner G, Trubetskoy A, et al. Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice. Nat Genet. 2002;32(1):160–165.PubMedCrossRefGoogle Scholar
  133. 133.
    Weston K. Myb proteins in life, death and differentiation. Curr Opin Genet Dev. 1998;8(1):76-81.PubMedCrossRefGoogle Scholar
  134. 134.
    Oh IH, Reddy EP. The myb gene family in cell growth, differentiation and apoptosis. Oncogene. 1999;18(19):3017–3033.PubMedCrossRefGoogle Scholar
  135. 135.
    Mucenski ML, McLain K, Kier AB, et al. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell. 1991;65(4):677–689.PubMedCrossRefGoogle Scholar
  136. 136.
    Emambokus N, Vegiopoulos A, Harman B, Jenkinson E, Anderson G, Frampton J. Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO J. 2003;22(17):4478–4488.PubMedCrossRefGoogle Scholar
  137. 137.
    Sandberg ML, Sutton SE, Pletcher MT, et al. c-Myb and p300 regulate hematopoietic stem cell proliferation and differentiation. Dev Cell. 2005;8(2):153–166.PubMedCrossRefGoogle Scholar
  138. 138.
    Sakamoto H, Dai G, Tsujino K, et al. Proper levels of c-Myb are discretely defined at distinct steps of hematopoietic cell development. Blood. 2006;108(3):896–903.PubMedCrossRefGoogle Scholar
  139. 139.
    Lahortiga I, De Keersmaecker K, Van Vlierberghe P, et al. Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nat Genet. 2007;39(5):593–595.PubMedCrossRefGoogle Scholar
  140. 140.
    Knoepfler PS. Myc goes global: new tricks for an old oncogene. Cancer Res. 2007;67(11):5061–5063.PubMedCrossRefGoogle Scholar
  141. 141.
    Sharma VM, Calvo JA, Draheim KM, et al. Notch1 contributes to mouse T-cell leukemia by directly inducing the expression of c-myc. Mol Cell Biol. 2006;26(21):8022–8031.PubMedCrossRefGoogle Scholar
  142. 142.
    Weng AP, Millholland JM, Yashiro-Ohtani Y, et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 2006;20(15):2096–2109.PubMedCrossRefGoogle Scholar
  143. 143.
    Krivtsov AV, Armstrong SA. MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer. 2007;7(11):823–833.PubMedCrossRefGoogle Scholar
  144. 144.
    Argiropoulos B, Humphries RK. Hox genes in hematopoiesis and leukemogenesis. Oncogene. 2007;26(47):6766–6776.PubMedCrossRefGoogle Scholar
  145. 145.
    Silverman LB. Acute lymphoblastic leukemia in infancy. Pediatr Blood Cancer. 2007;49(7 Suppl):1070–1073.PubMedCrossRefGoogle Scholar
  146. 146.
    Aplan PD. Chromosomal translocations involving the MLL gene: molecular mechanisms. DNA Repair (Amst). 2006;5(9–10):1265–1272.CrossRefGoogle Scholar
  147. 147.
    Eguchi M, Eguchi-Ishimae M, Greaves M. Molecular pathogenesis of MLL-associated leukemias. Int J Hematol. 2005;82(1):9–20.PubMedCrossRefGoogle Scholar
  148. 148.
    Rubnitz JE, Camitta BM, Mahmoud H, et al. Childhood acute lymphoblastic leukemia with the MLL-ENL fusion and t(11;19)(q23;p13.3) translocation. J Clin Oncol. 1999;17(1):191–196.PubMedGoogle Scholar
  149. 149.
    Berger R, Flandrin G, Bernheim A, et al. Cytogenetic studies on 519 consecutive de novo acute nonlymphocytic leukemias. Cancer Genet Cytogenet. 1987;29(1):9–21.PubMedCrossRefGoogle Scholar
  150. 150.
    Berger R, Le Coniat M, Derre J, Vecchione D, Chen SJ. Chromosomal rearrangement on chromosome 11q14-q21 in T cell acute lymphoblastic leukemia. Leukemia. 1989;3(8):560–562.PubMedGoogle Scholar
  151. 151.
    Heim S, Bekassy AN, Garwicz S, et al. Bone marrow karyotypes in 94 children with acute leukemia. Eur J Haematol. 1990;44(4):227–233.PubMedCrossRefGoogle Scholar
  152. 152.
    Sait SN, Dal Cin P, Sandberg AA. Recurrent involvement of 11q13 in acute nonlymphocytic leukemia. Cancer Genet Cytogenet. 1987;26(2):351–354.PubMedCrossRefGoogle Scholar
  153. 153.
    Tebar F, Bohlander SK, Sorkin A. Clathrin assembly lymphoid myeloid leukemia (CALM) protein: localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic. Mol Biol Cell. 1999;10(8):2687–2702.PubMedGoogle Scholar
  154. 154.
    Klebig ML, Wall MD, Potter MD, Rowe EL, Carpenter DA, Rinchik EM. Mutations in the clathrin-assembly gene Picalm are responsible for the hematopoietic and iron metabolism abnormalities in fit1 mice. Proc Natl Acad Sci USA. 2003;100(14):8360–8365.PubMedCrossRefGoogle Scholar
  155. 155.
    Borkhardt A, Haas OA, Strobl W, et al. A novel type of MLL/AF10 fusion transcript in a child with acute megakaryocytic leukemia (AML-M7). Leukemia. 1995;9(10):1796–1797.PubMedGoogle Scholar
  156. 156.
    Hjorth-Sorensen B, Pallisgaard N, Gronholm M, Hokland P, Clausen N, Jorgensen P. A novel MLL-AF10 fusion mRNA variant in a patient with acute myeloid leukemia detected by a new asymmetric reverse transcription PCR method. Leukemia. 1997;11(9):1588–1593.PubMedCrossRefGoogle Scholar
  157. 157.
    Okada Y, Feng Q, Lin Y, et al. hDOT1L links histone methylation to leukemogenesis. Cell. 2005;121(2):167–178.PubMedCrossRefGoogle Scholar
  158. 158.
    Kumon K, Kobayashi H, Maseki N, et al. Mixed-lineage leukemia with t(10;11)(p13;q21): an analysis of AF10-CALM and CALM-AF10 fusion mRNAs and clinical features. Genes Chromosomes Cancer. 1999;25(1):33–39.PubMedCrossRefGoogle Scholar
  159. 159.
    von Lindern M, Poustka A, Lerach H, Grosveld G. The (6;9) chromosome translocation, associated with a specific subtype of acute nonlymphocytic leukemia, leads to aberrant transcription of a target gene on 9q34. Mol Cell Biol. 1990;10(8):4016–4026.Google Scholar
  160. 160.
    Rosati R, La Starza R, Barba G, et al. Cryptic chromosome 9q34 deletion generates TAF-Ialpha/CAN and TAF-Ibeta/CAN fusion transcripts in acute myeloid leukemia. Haematologica. 2007;92(2):232–235.PubMedCrossRefGoogle Scholar
  161. 161.
    Nakamura T, Largaespada DA, Lee MP, et al. Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nat Genet. 1996;12(2):154–158.PubMedCrossRefGoogle Scholar
  162. 162.
    Borrow J, Shearman AM, Stanton VP Jr, et al. The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nat Genet. 1996;12(2):159–167.PubMedCrossRefGoogle Scholar
  163. 163.
    Slape C, Aplan PD. The role of NUP98 gene fusions in hematologic malignancy. Leuk Lymphoma. 2004;45(7):1341–1350.PubMedCrossRefGoogle Scholar
  164. 164.
    Panagopoulos I, Kerndrup G, Carlsen N, Strombeck B, Isaksson M, Johansson B. Fusion of NUP98 and the SET binding protein 1 (SETBP1) gene in a paediatric acute T cell lymphoblastic leukaemia with t(11;18)(p15;q12). Br J Haematol. 2007;136(2):294–296.PubMedCrossRefGoogle Scholar
  165. 165.
    Lahortiga I, Vizmanos JL, Agirre X, et al. NUP98 is fused to adducin 3 in a patient with T-cell acute lymphoblastic leukemia and myeloid markers, with a new translocation t(10;11)(q25;p15). Cancer Res. 2003;63(12):3079–3083.PubMedGoogle Scholar
  166. 166.
    Pan Q, Zhu YJ, Gu BW, et al. A new fusion gene NUP98-IQCG identified in an acute T-lymphoid/myeloid leukemia with a t(3;11)(q29q13;p15)del(3)(q29) translocation. Oncogene. 2008;27(24):3414–3423.PubMedCrossRefGoogle Scholar
  167. 167.
    Romana SP, Radford-Weiss I, Ben Abdelali R, et al. NUP98 rearrangements in hematopoietic malignancies: a study of the Groupe Francophone de Cytogenetique Hematologique. Leukemia. 2006;20(4):696–706.PubMedCrossRefGoogle Scholar
  168. 168.
    Kasper LH, Brindle PK, Schnabel CA, Pritchard CE, Cleary ML, van Deursen JM. CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Mol Cell Biol. 1999;19(1):764–776.PubMedGoogle Scholar
  169. 169.
    Van Etten RA, Jackson P, Baltimore D. The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell. 1989;58(4):669–678.PubMedCrossRefGoogle Scholar
  170. 170.
    Baskaran R, Wood LD, Whitaker LL, et al. Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation. Nature. 1997;387(6632):516–519.PubMedCrossRefGoogle Scholar
  171. 171.
    Gong JG, Costanzo A, Yang HQ, et al. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature. 1999;399(6738):806–809.PubMedCrossRefGoogle Scholar
  172. 172.
    Woodring PJ, Hunter T, Wang JY. Regulation of F-actin-dependent processes by the Abl family of tyrosine kinases. J Cell Sci. 2003;116(Pt 13):2613–2626.PubMedCrossRefGoogle Scholar
  173. 173.
    Welch PJ, Wang JY. A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle. Cell. 1993;75(4):779–790.PubMedCrossRefGoogle Scholar
  174. 174.
    Tybulewicz VL, Crawford CE, Jackson PK, Bronson RT, Mulligan RC. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell. 1991;65(7):1153–1163.PubMedCrossRefGoogle Scholar
  175. 175.
    Schwartzberg PL, Stall AM, Hardin JD, et al. Mice homozygous for the ablm1 mutation show poor viability and depletion of selected B and T cell populations. Cell. 1991;65(7):1165–1175.PubMedCrossRefGoogle Scholar
  176. 176.
    de Klein A, van Kessel AG, Grosveld G, et al. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature. 1982;300(5894):765–767.PubMedCrossRefGoogle Scholar
  177. 177.
    Konopka JB, Watanabe SM, Singer JW, Collins SJ, Witte ON. Cell lines and clinical isolates derived from Ph1-positive chronic myelogenous leukemia patients express c-abl proteins with a common structural alteration. Proc Natl Acad Sci USA. 1985;82(6):1810–1814.PubMedCrossRefGoogle Scholar
  178. 178.
    McWhirter JR, Wang JY. Activation of tyrosinase kinase and microfilament-binding functions of c-abl by bcr sequences in bcr/abl fusion proteins. Mol Cell Biol. 1991;11(3):1553–1565.PubMedGoogle Scholar
  179. 179.
    Faderl S, Kantarjian HM, Talpaz M, Estrov Z. Clinical significance of cytogenetic abnormalities in adult acute lymphoblastic leukemia. Blood. 1998;91(11):3995–4019.PubMedGoogle Scholar
  180. 180.
    De Keersmaecker K, Rocnik JL, Bernad R, et al. Kinase activation and transformation by NUP214-ABL1 is dependent on the context of the nuclear pore. Mol Cell. 2008;31(1):134–142.PubMedCrossRefGoogle Scholar
  181. 181.
    Quintas-Cardama A, Tong W, Manshouri T, et al. Activity of tyrosine kinase inhibitors against human NUP214-ABL1-positive T cell malignancies. Leukemia. 2008;22(6):1117–1124.PubMedCrossRefGoogle Scholar
  182. 182.
    Burmeister T, Gokbuget N, Reinhardt R, Rieder H, Hoelzer D, Schwartz S. NUP214-ABL1 in adult T-ALL: the GMALL study group experience. Blood. 2006;108(10):3556–3559.PubMedCrossRefGoogle Scholar
  183. 183.
    O’Dwyer ME, Druker BJ. STI571: an inhibitor of the BCR-ABL tyrosine kinase for the treatment of chronic myelogenous leukaemia. Lancet Oncol. 2000;1:207–211.PubMedCrossRefGoogle Scholar
  184. 184.
    Piccaluga PP, Paolini S, Martinelli G. Tyrosine kinase inhibitors for the treatment of Philadelphia chromosome-positive adult acute lymphoblastic leukemia. Cancer. 2007;110(6):1178–1186.PubMedCrossRefGoogle Scholar
  185. 185.
    De Keersmaecker K, Versele M, Cools J, Superti-Furga G, Hantschel O. Intrinsic differences between the catalytic properties of the oncogenic NUP214-ABL1 and BCR-ABL1 fusion protein kinases. Leukemia. 2008;22(12):2208–2216.PubMedCrossRefGoogle Scholar
  186. 186.
    Schindler C, Levy DE, Decker T. JAK-STAT signaling: from interferons to cytokines. J Biol Chem. 2007;282(28):20059–20063.PubMedCrossRefGoogle Scholar
  187. 187.
    Rodig SJ, Meraz MA, White JM, et al. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell. 1998;93(3):373–383.PubMedCrossRefGoogle Scholar
  188. 188.
    Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell. 1998;93(3):397–409.PubMedCrossRefGoogle Scholar
  189. 189.
    Thomis DC, Lee W, Berg LJ. T cells from Jak3-deficient mice have intact TCR signaling, but increased apoptosis. J Immunol. 1997;159(10):4708–4719.PubMedGoogle Scholar
  190. 190.
    Baird AM, Thomis DC, Berg LJ. T cell development and activation in Jak3-deficient mice. J Leukoc Biol. 1998;63(6):669–677.PubMedGoogle Scholar
  191. 191.
    Seto Y, Nakajima H, Suto A, et al. Enhanced Th2 cell-mediated allergic inflammation in Tyk2-deficient mice. J Immunol. 2003;170(2):1077–1083.PubMedGoogle Scholar
  192. 192.
    Levine RL, Gilliland DG. Myeloproliferative disorders. Blood. 2008;112(6):2190–2198.PubMedCrossRefGoogle Scholar
  193. 193.
    Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–1790.PubMedCrossRefGoogle Scholar
  194. 194.
    Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054–1061.PubMedGoogle Scholar
  195. 195.
    James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–1148.PubMedCrossRefGoogle Scholar
  196. 196.
    Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–397.PubMedCrossRefGoogle Scholar
  197. 197.
    Peeters P, Raynaud SD, Cools J, et al. Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood. 1997;90(7):2535–2540.PubMedGoogle Scholar
  198. 198.
    Lacronique V, Boureux A, Valle VD, et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science. 1997;278(5341):1309–1312.PubMedCrossRefGoogle Scholar
  199. 199.
    Ho JM, Beattie BK, Squire JA, Frank DA, Barber DL. Fusion of the ets transcription factor TEL to Jak2 results in constitutive Jak-Stat signaling. Blood. 1999;93(12):4354–4364.PubMedGoogle Scholar
  200. 200.
    Carron C, Cormier F, Janin A, et al. TEL-JAK2 transgenic mice develop T-cell leukemia. Blood. 2000;95(12):3891–3899.PubMedGoogle Scholar
  201. 201.
    Lyman SD, Brasel K, Rousseau AM, Williams DE. The flt3 ligand: a hematopoietic stem cell factor whose activities are distinct from steel factor. Stem Cells. 1994;12 Suppl 1:99–107; discussion 8-10.PubMedGoogle Scholar
  202. 202.
    Gilliland DG, Griffin JD. Role of FLT3 in leukemia. Curr Opin Hematol. 2002;9(4):274–281.PubMedCrossRefGoogle Scholar
  203. 203.
    Scholl C, Gilliland DG, Frohling S. Deregulation of signaling pathways in acute myeloid leukemia. Semin Oncol. 2008;35(4):336–345.PubMedCrossRefGoogle Scholar
  204. 204.
    Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100(5):1532–1542.PubMedCrossRefGoogle Scholar
  205. 205.
    Yokota S, Kiyoi H, Nakao M, et al. Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia. 1997;11(10):1605–1609.PubMedCrossRefGoogle Scholar
  206. 206.
    Horiike S, Yokota S, Nakao M, et al. Tandem duplications of the FLT3 receptor gene are associated with leukemic transformation of myelodysplasia. Leukemia. 1997;11(9):1442–1446.PubMedCrossRefGoogle Scholar
  207. 207.
    Armstrong SA, Kung AL, Mabon ME, et al. Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell. 2003;3(2):173–183.PubMedCrossRefGoogle Scholar
  208. 208.
    Taketani T, Taki T, Sugita K, et al. FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy. Blood. 2004;103(3):1085–1088.PubMedCrossRefGoogle Scholar
  209. 209.
    Yamamoto Y, Kiyoi H, Nakano Y, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood. 2001;97(8):2434–2439.PubMedCrossRefGoogle Scholar
  210. 210.
    Brown P, Levis M, Shurtleff S, Campana D, Downing J, Small D. FLT3 inhibition selectively kills childhood acute lymphoblastic leukemia cells with high levels of FLT3 expression. Blood. 2005;105(2):812–820.PubMedCrossRefGoogle Scholar
  211. 211.
    Knapper S. FLT3 inhibition in acute myeloid leukaemia. Br J Haematol. 2007;138(6):687–699.PubMedCrossRefGoogle Scholar
  212. 212.
    Paietta E, Ferrando AA, Neuberg D, et al. Activating FLT3 mutations in CD117/KIT(+) T-cell acute lymphoblastic leukemias. Blood. 2004;104(2):558–560.PubMedCrossRefGoogle Scholar
  213. 213.
    Van Vlierberghe P, Meijerink JP, Stam RW, et al. Activating FLT3 mutations in CD4+/CD8- pediatric T-cell acute lymphoblastic leukemias. Blood. 2005;106(13):4414–4415.PubMedCrossRefGoogle Scholar
  214. 214.
    Palacios EH, Weiss A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene. 2004;23(48):7990–8000.PubMedCrossRefGoogle Scholar
  215. 215.
    Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ, Der CJ. Increasing complexity of Ras signaling. Oncogene. 1998;17(11 Reviews):1395–1413.PubMedCrossRefGoogle Scholar
  216. 216.
    Campbell PM, Der CJ. Oncogenic Ras and its role in tumor cell invasion and metastasis. Semin Cancer Biol. 2004;14(2):105–114.PubMedCrossRefGoogle Scholar
  217. 217.
    Yokota S, Nakao M, Horiike S, et al. Mutational analysis of the N-ras gene in acute lymphoblastic leukemia: a study of 125 Japanese pediatric cases. Int J Hematol. 1998;67(4):379–387.PubMedCrossRefGoogle Scholar
  218. 218.
    Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2001;17:615–675.PubMedCrossRefGoogle Scholar
  219. 219.
    Sulis ML, Parsons R. PTEN: from pathology to biology. Trends Cell Biol. 2003;13(9):478–483.PubMedCrossRefGoogle Scholar
  220. 220.
    Cully M, You H, Levine AJ, Mak TW. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer. 2006;6(3):184–192.PubMedCrossRefGoogle Scholar
  221. 221.
    Bader AG, Kang S, Zhao L, Vogt PK. Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer. 2005;5(12):921–929.PubMedCrossRefGoogle Scholar
  222. 222.
    Samuels Y, Ericson K. Oncogenic PI3K and its role in cancer. Curr Opin Oncol. 2006;18(1):77–82.PubMedCrossRefGoogle Scholar
  223. 223.
    Hay N. The Akt-mTOR tango and its relevance to cancer. Cancer Cell. 2005;8(3):179–183.PubMedCrossRefGoogle Scholar
  224. 224.
    Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr Opin Cell Biol. 2005;17(6):596–603.PubMedCrossRefGoogle Scholar
  225. 225.
    Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712):1098–1101.PubMedCrossRefGoogle Scholar
  226. 226.
    Staal SP, Hartley JW, Rowe WP. Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma. Proc Natl Acad Sci USA. 1977;74(7):3065–3067.PubMedCrossRefGoogle Scholar
  227. 227.
    Bellacosa A, Testa JR, Staal SP, Tsichlis PN. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science. 1991;254(5029):274–277.PubMedCrossRefGoogle Scholar
  228. 228.
    Ahmed NN, Franke TF, Bellacosa A, et al. The proteins encoded by c-akt and v-akt differ in post-translational modification, subcellular localization and oncogenic potential. Oncogene. 1993;8(7):1957–1963.PubMedGoogle Scholar
  229. 229.
    Wang SI, Parsons R, Ittmann M. Homozygous deletion of the PTEN tumor suppressor gene in a subset of prostate adenocarcinomas. Clin Cancer Res. 1998;4(3):811–815.PubMedGoogle Scholar
  230. 230.
    Celebi JT, Shendrik I, Silvers DN, Peacocke M. Identification of PTEN mutations in metastatic melanoma specimens. J Med Genet. 2000;37(9):653–657.PubMedCrossRefGoogle Scholar
  231. 231.
    Bussaglia E, del Rio E, Matias-Guiu X, Prat J. PTEN mutations in endometrial carcinomas: a molecular and clinicopathologic analysis of 38 cases. Hum Pathol. 2000;31(3):312–317.PubMedCrossRefGoogle Scholar
  232. 232.
    Sakai A, Thieblemont C, Wellmann A, Jaffe ES, Raffeld M. PTEN gene alterations in lymphoid neoplasms. Blood. 1998;92(9):3410–3415.PubMedGoogle Scholar
  233. 233.
    Liu TC, Lin PM, Chang JG, Lee JP, Chen TP, Lin SF. Mutation analysis of PTEN/MMAC1 in acute myeloid leukemia. Am J Hematol. 2000;63(4):170–175.PubMedCrossRefGoogle Scholar
  234. 234.
    Aggerholm A, Gronbaek K, Guldberg P, Hokland P. Mutational analysis of the tumour suppressor gene MMAC1/PTEN in malignant myeloid disorders. Eur J Haematol. 2000;65(2):109–113.PubMedCrossRefGoogle Scholar
  235. 235.
    Gronbaek K, Zeuthen J, Guldberg P, Ralfkiaer E, Hou-Jensen K. Alterations of the MMAC1/PTEN gene in lymphoid malignancies. Blood. 1998;91(11):4388–4390.PubMedGoogle Scholar
  236. 236.
    Nakahara Y, Nagai H, Kinoshita T, et al. Mutational analysis of the PTEN/MMAC1 gene in non-Hodgkin’s lymphoma. Leukemia. 1998;12(8):1277–1280.PubMedCrossRefGoogle Scholar
  237. 237.
    Butler MP, Wang SI, Chaganti RS, Parsons R, Dalla-Favera R. Analysis of PTEN mutations and deletions in B-cell non-Hodgkin’s lymphomas. Genes Chromosomes Cancer. 1999;24(4):322–327.PubMedCrossRefGoogle Scholar
  238. 238.
    Yilmaz OH, Valdez R, Theisen BK, et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature. 2006;441(7092):475–482.PubMedCrossRefGoogle Scholar
  239. 239.
    Mullighan CG, Goorha S, Radtke I, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446(7137):758–764.PubMedCrossRefGoogle Scholar
  240. 240.
    Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13(12):1501–1512.PubMedCrossRefGoogle Scholar
  241. 241.
    Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993;366(6456):704–707.PubMedCrossRefGoogle Scholar
  242. 242.
    Okamoto A, Demetrick DJ, Spillare EA, et al. Mutations and altered expression of p16INK4 in human cancer. Proc Natl Acad Sci USA. 1994;91(23):11045–11049.PubMedCrossRefGoogle Scholar
  243. 243.
    Hannon GJ, Beach D. p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature. 1994;371(6494):257–261.PubMedCrossRefGoogle Scholar
  244. 244.
    Kamijo T, Zindy F, Roussel MF, et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell. 1997;91(5):649–659.PubMedCrossRefGoogle Scholar
  245. 245.
    Chin L, Pomerantz J, DePinho RA. The INK4a/ARF tumor suppressor: one gene – two products – two pathways. Trends Biochem Sci. 1998;23(8):291–296.PubMedCrossRefGoogle Scholar
  246. 246.
    Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA. 1998;95(14):8292–8297.PubMedCrossRefGoogle Scholar
  247. 247.
    Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell. 1998;92(6):725–734.PubMedCrossRefGoogle Scholar
  248. 248.
    Gardie B, Cayuela JM, Martini S, Sigaux F. Genomic alterations of the p19ARF encoding exons in T-cell acute lymphoblastic leukemia. Blood. 1998;91(3):1016–1020.PubMedGoogle Scholar
  249. 249.
    Pui CH, Relling MV, Downing JR. Acute lymphoblastic leukemia. N Engl J Med. 2004;350(15):1535–1548.PubMedCrossRefGoogle Scholar
  250. 250.
    Pui C. Childhood Leukemias. Cambridge: Cambridge University Press; 1999.Google Scholar
  251. 251.
    Chessells JM, Bailey C, Richards SM. Intensification of treatment and survival in all children with lymphoblastic leukaemia: results of UK Medical Research Council trial UKALL X. Medical Research Council Working Party on Childhood Leukaemia. Lancet. 1995;345(8943):143–148.PubMedCrossRefGoogle Scholar
  252. 252.
    Pui CH, Evans WE. Acute lymphoblastic leukemia. N Engl J Med. 1998;339(9):605–615.PubMedCrossRefGoogle Scholar
  253. 253.
    Rivera GK, Raimondi SC, Hancock ML, et al. Improved outcome in childhood acute lymphoblastic leukaemia with reinforced early treatment and rotational combination chemotherapy. Lancet. 1991;337(8733):61–66.PubMedCrossRefGoogle Scholar
  254. 254.
    Schrappe M, Reiter A, Ludwig WD, et al. Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: results of trial ALL-BFM 90. German-Austrian-Swiss ALL-BFM Study Group. Blood. 2000;95(11):3310–3322.PubMedGoogle Scholar
  255. 255.
    Silverman LB, Gelber RD, Dalton VK, et al. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91–01. Blood. 2001;97(5):1211–1218.PubMedCrossRefGoogle Scholar
  256. 256.
    Czuczman MS, Dodge RK, Stewart CC, et al. Value of immunophenotype in intensively treated adult acute lymphoblastic leukemia: cancer and leukemia Group B study 8364. Blood. 1999;93(11):3931–3939.PubMedGoogle Scholar
  257. 257.
    Barrett AJ, Horowitz MM, Pollock BH, et al. Bone marrow transplants from HLA-identical siblings as compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission. N Engl J Med. 1994;331(19):1253–1258.PubMedCrossRefGoogle Scholar
  258. 258.
    Biggs JC, Horowitz MM, Gale RP, et al. Bone marrow transplants may cure patients with acute leukemia never achieving remission with chemotherapy. Blood. 1992;80(4):1090–1093.PubMedGoogle Scholar
  259. 259.
    Dopfer R, Henze G, Bender-Gotze C, et al. Allogeneic bone marrow transplantation for childhood acute lymphoblastic leukemia in second remission after intensive primary and relapse therapy according to the BFM- and CoALL-protocols: results of the German Cooperative Study. Blood. 1991;78(10):2780–2784.PubMedGoogle Scholar
  260. 260.
    Forman SJ, Schmidt GM, Nademanee AP, et al. Allogeneic bone marrow transplantation as therapy for primary induction failure for patients with acute leukemia. J Clin Oncol. 1991;9(9):1570–1574.PubMedGoogle Scholar
  261. 261.
    Schroeder H, Gustafsson G, Saarinen-Pihkala UM, et al. Allogeneic bone marrow transplantation in second remission of childhood acute lymphoblastic leukemia: a population-based case control study from the Nordic countries. Bone Marrow Transplant. 1999;23(6):555–560.PubMedCrossRefGoogle Scholar
  262. 262.
    Ochs J, Mulhern R. Long-term sequelae of therapy for childhood acute lymphoblastic leukaemia. Baillieres Clin Haematol. 1994;7(2):365–376.PubMedCrossRefGoogle Scholar
  263. 263.
    Pullen J, Shuster JJ, Link M, et al. Significance of commonly used prognostic factors differs for children with T cell acute lymphocytic leukemia (ALL), as compared to those with B-precursor ALL. A Pediatric Oncology Group (POG) study. Leukemia. 1999;13(11):1696–1707.PubMedCrossRefGoogle Scholar
  264. 264.
    Bergeron J, Clappier E, Radford I, et al. Prognostic and oncogenic relevance of TLX1/HOX11 expression level in T-ALLs. Blood. 2007;110(7):2324–2330.PubMedCrossRefGoogle Scholar
  265. 265.
    van Grotel M, Meijerink JP, van Wering ER, et al. Prognostic significance of molecular-cytogenetic abnormalities in pediatric T-ALL is not explained by immunophenotypic differences. Leukemia. 2008;22(1):124–131.PubMedCrossRefGoogle Scholar
  266. 266.
    van Grotel M, Meijerink JP, Beverloo HB, et al. The outcome of molecular-cytogenetic subgroups in pediatric T-cell acute lymphoblastic leukemia: a retrospective study of patients treated according to DCOG or COALL protocols. Haematologica. 2006;91(9):1212–1221.PubMedGoogle Scholar
  267. 267.
    Zhu YM, Zhao WL, Fu JF, et al. NOTCH1 mutations in T-cell acute lymphoblastic leukemia: prognostic significance and implication in multifactorial leukemogenesis. Clin Cancer Res. 2006;12(10):3043–3049.PubMedCrossRefGoogle Scholar
  268. 268.
    Szczepanski T. Why and how to quantify minimal residual disease in acute lymphoblastic leukemia? Leukemia. 2007;21(4):622–626.PubMedGoogle Scholar
  269. 269.
    van der Velden VH, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJ. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia. 2003;17(6):1013–1034.PubMedCrossRefGoogle Scholar
  270. 270.
    Cazzaniga G, Gaipa G, Rossi V, Biondi A. Monitoring of minimal residual disease in leukemia, advantages and pitfalls. Ann Med. 2006;38(7):512–521.PubMedCrossRefGoogle Scholar
  271. 271.
    O’Neil J, Calvo J, McKenna K, et al. Activating Notch1 mutations in mouse models of T-ALL. Blood. 2006;107(2):781–785.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kim De Keersmaecker
    • 1
    • 2
  • Adolfo Ferrando
    • 3
  1. 1.Departments of Pediatrics and PathologyColumbia University Medical CenterNew YorkUSA
  2. 2.Department of Molecular and Developmental Genetics-VIBCenter for Human Genetics, K.U. Leuven HospitalLeuvenBelgium
  3. 3.Institute for Cancer Genetics, Columbia UniversityNew YorkUSA

Personalised recommendations