Precursor B-Cell Acute Lymphoblastic Leukemia

  • Julie M. Gastier-Foster
Part of the Molecular Pathology Library book series (MPLB, volume 4)


Acute lymphoblastic leukemia (ALL) is a heterogeneous group of disorders caused by clonal expansion of immature lymphoid cells. The overall age-adjusted incidence is approximately 1.6 per 100,000 persons, with higher rates among children and adolescents than in adults. Diagnosis is based on bone marrow (BM) morphology, immunophenotyping by flow cytometry and/or immunohistochemistry, and identification of chromosomal/genetic abnormalities by cytogenetic or molecular genetic analysis. Precursor-B ALL, characterized by a malignant proliferation of immature B-lineage lymphoid cells, comprises the majority of all leukemias in both adults and children. Treatment of ALL involves multiple agents given in a complex regimen, typically lasting 2–3 years and involving numerous chemotherapeutic agents with different mechanisms of action. – Patients who achieve clinical remission (<5% blasts in the BM) after an initial month-long induction phase receive intensified consolidation to eliminate residual leukemic blasts, and maintenance therapy to suppress re-emergence of therapy-resistant clones.


Acute Lymphoblastic Leukemia Minimal Residual Disease Pediatric Oncology Group 11q23 Abnormality Adverse Risk Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to acknowledge the invaluable technical assistance of Dr. Martha Sensel and Kathryn O’Dell in the preparation of this chapter. She would also like to thank Dr. Nyla Heerema for her careful review and suggestions.


  1. 1.
    Greaves MF, Verbi W, Kemshead J, Kennett R. A monoclonal antibody identifying a cell surface antigen shared by common acute lymphoblastic leukemias and B lineage cells. Blood. 1980;56(6):1141–1144.PubMedGoogle Scholar
  2. 2.
    Gaynon PS, Trigg ME, Heerema NA, et al. Children’s Cancer Group trials in childhood acute lymphoblastic leukemia: 1983–1995. Leukemia. 2000;14(12):2223–2233.PubMedCrossRefGoogle Scholar
  3. 3.
    Gokbuget N, Hoelzer D. Treatment of adult acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program 2006;133–141.Google Scholar
  4. 4.
    Maloney KW, Shuster JJ, Murphy S, Pullen J, Camitta BA. Long-term results of treatment studies for childhood acute lymphoblastic leukemia: Pediatric Oncology Group studies from 1986–1994. Leukemia. 2000;14(12):2276–2285.PubMedCrossRefGoogle Scholar
  5. 5.
    Schrappe M, Reiter A, Zimmermann M, et al. Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Berlin-Frankfurt-Munster. Leukemia. 2000;14(12):2205–2222.PubMedCrossRefGoogle Scholar
  6. 6.
    Silverman LB, Declerck L, Gelber RD, et al. Results of Dana-Farber Cancer Institute Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1981–1995). Leukemia. 2000;14(12):2247–2256.PubMedCrossRefGoogle Scholar
  7. 7.
    Smith M, Arthur D, Camitta B, et al. Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J Clin Oncol. 1996;14(1):18–24.PubMedGoogle Scholar
  8. 8.
    Schultz KR, Pullen DJ, Sather HN, et al. Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children’s Cancer Group (CCG). Blood. 2007;109(3):926–935.PubMedCrossRefGoogle Scholar
  9. 9.
    Chessells JM, Hall E, Prentice HG, Durrant J, Bailey CC, Richards SM. The impact of age on outcome in lymphoblastic leukaemia; MRC UKALL X and XA compared: a report from the MRC Paediatric and Adult Working Parties. Leukemia. 1998;12(4):463–473.PubMedCrossRefGoogle Scholar
  10. 10.
    Chessels JM, Swansbury GJ, Reeves B, Bailey CC, Richards SM. Cytogenetics and prognosis in childhood lymphoblastic leukaemia: results of MRC UKALL X. Medical Research Council Working Party in Childhood Leukaemia. Br J Haematol. 1997;99(1):93–100.PubMedCrossRefGoogle Scholar
  11. 11.
    Heerema NA, Sather HN, Sensel MG, et al. Prognostic impact of trisomies of chromosomes 10, 17, and 5 among children with acute lymphoblastic leukemia and high hyperdiploidy (>50 chromosomes). J Clin Oncol. 2000;18(9):1876–1887.PubMedGoogle Scholar
  12. 12.
    Moorman AV, Richards SM, Martineau M, et al. Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. Blood. 2003;102(8):2756–2762.PubMedCrossRefGoogle Scholar
  13. 13.
    Cytogenetic abnormalities in adult acute lymphoblastic leukemia: correlations with hematologic findings outcome. A Collaborative Study of the Group Francais de Cytogenetique Hematologique. Blood 1996;87(8):3135–3142.Google Scholar
  14. 14.
    Bloomfield CD, Goldman AI, Alimena G, et al. Chromosomal abnormalities identify high-risk and low-risk patients with acute lymphoblastic leukemia. Blood. 1986;67(2):415–420.PubMedGoogle Scholar
  15. 15.
    Moorman AV, Harrison CJ, Buck GA, et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood. 2007;109(8):3189–3197.PubMedCrossRefGoogle Scholar
  16. 16.
    Secker-Walker LM, Prentice HG, Durrant J, Richards S, Hall E, Harrison G. Cytogenetics adds independent prognostic information in adults with acute lymphoblastic leukaemia on MRC trial UKALL XA. MRC Adult Leukaemia Working Party. Br J Haematol. 1997;96(3):601–610.PubMedCrossRefGoogle Scholar
  17. 17.
    Wetzler M, Dodge RK, Mrozek K, et al. Prospective karyotype analysis in adult acute lymphoblastic leukemia: the cancer and leukemia Group B experience. Blood. 1999;93(11):3983–3993.PubMedGoogle Scholar
  18. 18.
    Harrison CJ, Moorman AV, Broadfield ZJ, et al. Three distinct subgroups of hypodiploidy in acute lymphoblastic leukaemia. Br J Haematol. 2004;125(5):552–559.PubMedCrossRefGoogle Scholar
  19. 19.
    Heerema NA, Nachman JB, Sather HN, et al. Hypodiploidy with less than 45 chromosomes confers adverse risk in childhood acute lymphoblastic leukemia: a report from the children’s cancer group. Blood. 1999;94(12):4036–4045.PubMedGoogle Scholar
  20. 20.
    Pui CH, Carroll AJ, Raimondi SC, et al. Clinical presentation, karyotypic characterization, and treatment outcome of childhood acute lymphoblastic leukemia with a near-haploid or hypodiploid less than 45 line. Blood. 1990;75(5):1170–1177.PubMedGoogle Scholar
  21. 21.
    Pui CH, Evans WE. Acute lymphoblastic leukemia. N Engl J Med. 1998;339(9):605–615.PubMedCrossRefGoogle Scholar
  22. 22.
    Raimondi SC, Roberson PK, Pui CH, Behm FG, Rivera GK. Hyperdiploid (47–50) acute lymphoblastic leukemia in children. Blood. 1992;79(12):3245–3252.PubMedGoogle Scholar
  23. 23.
    Barry E, DeAngelo DJ, Neuberg D, et al. Favorable outcome for adolescents with acute lymphoblastic leukemia treated on Dana-Farber Cancer Institute Acute Lymphoblastic Leukemia Consortium Protocols. J Clin Oncol. 2007;25(7):813–819.PubMedCrossRefGoogle Scholar
  24. 24.
    Borkhardt A, Cazzaniga G, Viehmann S, et al. Incidence and clinical relevance of TEL/AML1 fusion genes in children with acute lymphoblastic leukemia enrolled in the German and Italian multicenter therapy trials. Associazione Italiana Ematologia Oncologia Pediatrica and the Berlin-Frankfurt-Munster Study Group. Blood. 1997;90(2):571–577.PubMedGoogle Scholar
  25. 25.
    Loh ML, Goldwasser MA, Silverman LB, et al. Prospective analysis of TEL/AML1-positive patients treated on Dana-Farber Cancer Institute Consortium Protocol 95–01. Blood. 2006;107(11):4508–4513.PubMedCrossRefGoogle Scholar
  26. 26.
    Uckun FM, Pallisgaard N, Hokland P, et al. Expression of TEL-AML1 fusion transcripts and response to induction therapy in standard risk acute lymphoblastic leukemia. Leuk Lymphoma. 2001;42(1–2):41–56.PubMedCrossRefGoogle Scholar
  27. 27.
    Borowitz MJ, Rubnitz J, Nash M, Pullen DJ, Camitta B. Surface antigen phenotype can predict TEL–AML1 rearrangement in childhood B–precursor ALL: a Pediatric Oncology Group study. Leukemia. 1998;12(11):1764–1770.PubMedCrossRefGoogle Scholar
  28. 28.
    Aguiar RC, Sohal J, van Rhee F, et al. TEL-AML1 fusion in acute lymphoblastic leukaemia of adults. M.R.C. Adult Leukaemia Working Party. Br J Haematol. 1996;95(4):673–677.PubMedCrossRefGoogle Scholar
  29. 29.
    Elia L, Mancini M, Moleti L, et al. A multiplex reverse transcriptase-polymerase chain reaction strategy for the diagnostic molecular screening of chimeric genes: a clinical evaluation on 170 patients with acute lymphoblastic leukemia. Haematologica. 2003;88(3):275–279.PubMedGoogle Scholar
  30. 30.
    Jabber Al-Obaidi MS, Martineau M, Bennett CF, et al. ETV6/AML1 fusion by FISH in adult acute lymphoblastic leukemia. Leukemia. 2002;16(4):669–674.PubMedCrossRefGoogle Scholar
  31. 31.
    Kwong YL, Wong KF. Low frequency of TEL/AML1 in adult acute lymphoblastic leukemia. Cancer Genet Cytogenet. 1997;98(2):137–138.PubMedCrossRefGoogle Scholar
  32. 32.
    Lee DS, Kim YR, Cho HK, Lee CK, Lee JH, Cho HI. The presence of TEL/AML1 rearrangement and cryptic deletion of the TEL gene in adult acute lymphoblastic leukemia (ALL). Cancer Genet Cytogenet. 2005;162(2):176–178.PubMedCrossRefGoogle Scholar
  33. 33.
    Raynaud S, Mauvieux L, Cayuela JM, et al. TEL/AML1 fusion gene is a rare event in adult acute lymphoblastic leukemia. Leukemia. 1996;10(9):1529–1530.PubMedGoogle Scholar
  34. 34.
    Shih LY, Chou TB, Liang DC, et al. Lack of TEL-AML1 fusion transcript resulting from a cryptic t(12;21) in adult B lineage acute lymphoblastic leukemia in Taiwan. Leukemia. 1996;10(9):1456–1458.PubMedGoogle Scholar
  35. 35.
    Schlieben S, Borkhardt A, Reinisch I, et al. Incidence and clinical outcome of children with BCR/ABL-positive acute lymphoblastic leukemia (ALL). A prospective RT-PCR study based on 673 patients enrolled in the German pediatric multicenter therapy trials ALL-BFM-90 and CoALL-05-92. Leukemia. 1996;10(6):957–963.PubMedGoogle Scholar
  36. 36.
    Uckun FM, Nachman JB, Sather HN, et al. Clinical significance of Philadelphia chromosome positive pediatric acute lymphoblastic leukemia in the context of contemporary intensive therapies: a report from the Children’s Cancer Group. Cancer. 1998;83(9):2030–2039.PubMedCrossRefGoogle Scholar
  37. 37.
    Pullarkat V, Slovak ML, Kopecky KJ, Forman SJ, Appelbaum FR. Impact of cytogenetics on the outcome of adult acute lymphoblastic leukemia: results of Southwest Oncology Group 9400 study. Blood. 2008;111(5):2563–2572.PubMedCrossRefGoogle Scholar
  38. 38.
    Thomas X, Boiron JM, Huguet F, et al. Outcome of treatment in adults with acute lymphoblastic leukemia: analysis of the LALA-94 trial. J Clin Oncol. 2004;22(20):4075–4086.PubMedCrossRefGoogle Scholar
  39. 39.
    Czuczman MS, Dodge RK, Stewart CC, et al. Value of immunophenotype in intensively treated adult acute lymphoblastic leukemia: cancer and leukemia Group B study 8364. Blood. 1999;93(11):3931–3939.PubMedGoogle Scholar
  40. 40.
    Rambaldi A, Attuati V, Bassan R, et al. Molecular diagnosis and clinical relevance of t(9;22), t(4;11) and t(1; 19) chromosome abnormalities in a consecutive group of 141 adult patients with acute lymphoblastic leukemia. Leuk Lymphoma. 1996;21(5-6):457–466.PubMedCrossRefGoogle Scholar
  41. 41.
    Behm FG, Raimondi SC, Frestedt JL, et al. Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age. Blood. 1996;87(7):2870–2877.PubMedGoogle Scholar
  42. 42.
    Raimondi SC, Peiper SC, Kitchingman GR, et al. Childhood acute lymphoblastic leukemia with chromosomal breakpoints at 11q23. Blood. 1989;73(6):1627–1634.PubMedGoogle Scholar
  43. 43.
    Mullighan CG, Goorha S, Radtke I, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446(7137):758–764.PubMedCrossRefGoogle Scholar
  44. 44.
    Rubnitz JE, Behm FG, Pui CH, et al. Genetic studies of childhood acute lymphoblastic leukemia with emphasis on p16, MLL, and ETV6 gene abnormalities: results of St Jude Total Therapy Study XII. Leukemia. 1997;11(8):1201–1206.PubMedCrossRefGoogle Scholar
  45. 45.
    Pui CH, Frankel LS, Carroll AJ, et al. Clinical characteristics and treatment outcome of childhood acute lymphoblastic leukemia with the t(4;11)(q21;q23): a collaborative study of 40 cases. Blood. 1991;77(3):440–447.PubMedGoogle Scholar
  46. 46.
    Crist WM, Carroll AJ, Shuster JJ, et al. Poor prognosis of children with pre-B acute lymphoblastic leukemia is associated with the t(1;19)(q23;p13): a Pediatric Oncology Group study. Blood. 1990;76(1):117–122.PubMedGoogle Scholar
  47. 47.
    Pui CH, Crist WM, Look AT. Biology and clinical significance of cytogenetic abnormalities in childhood acute lymphoblastic leukemia. Blood. 1990;76(8):1449–1463.PubMedGoogle Scholar
  48. 48.
    Uckun FM, Sensel MG, Sather HN, et al. Clinical significance of translocation t(1;19) in childhood acute lymphoblastic leukemia in the context of contemporary therapies: a report from the Children’s Cancer Group. J Clin Oncol. 1998;16(2):527–535.PubMedGoogle Scholar
  49. 49.
    Heerema NA, Sather HN, Sensel MG, et al. Association of chromosome arm 9p abnormalities with adverse risk in childhood acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood. 1999;94(5):1537–1544.PubMedGoogle Scholar
  50. 50.
    Murphy SB, Raimondi SC, Rivera GK, et al. Nonrandom abnormalities of chromosome 9p in childhood acute lymphoblastic leukemia: association with high-risk clinical features. Blood. 1989;74(1):409–415.PubMedGoogle Scholar
  51. 51.
    Nahi H, Hagglund H, Ahlgren T, et al. An investigation into whether deletions in 9p reflect prognosis in adult precursor B-cell ALL: a multi-center study of 381 patients. Haematologica. 2008;93(11):1734–1738.PubMedCrossRefGoogle Scholar
  52. 52.
    Harewood L, Robinson H, Harris R, et al. Amplification of AML1 on a duplicated chromosome 21 in acute lymphoblastic leukemia: a study of 20 cases. Leukemia. 2003;17(3):547–553.PubMedCrossRefGoogle Scholar
  53. 53.
    Harrison CJ, Moorman AV, Barber KE, et al. Interphase molecular cytogenetic screening for chromosomal abnormalities of prognostic significance in childhood acute lymphoblastic leukaemia: a UK Cancer Cytogenetics Group Study. Br J Haematol. 2005;129(4):520–530.PubMedCrossRefGoogle Scholar
  54. 54.
    HUGO Gene Nomenclature Committee. Internet 2008 October 14;Available at: URL:
  55. 55.
    Downing JR, Mullighan CG. Tumor-specific genetic lesions and their influence on therapy in pediatric acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2006;118–22:508.Google Scholar
  56. 56.
    Faderl S, Jeha S, Kantarjian HM. The biology and therapy of adult acute lymphoblastic leukemia. Cancer. 2003;98(7):1337–1354.PubMedCrossRefGoogle Scholar
  57. 57.
    Maia AT, van der Velden VH, Harrison CJ, et al. Prenatal origin of hyperdiploid acute lymphoblastic leukemia in identical twins. Leukemia. 2003;17(11):2202–2206.PubMedCrossRefGoogle Scholar
  58. 58.
    Maia AT, Tussiwand R, Cazzaniga G, et al. Identification of preleukemic precursors of hyperdiploid acute lymphoblastic leukemia in cord blood. Genes Chromosomes Cancer. 2004;40(1):38–43.PubMedCrossRefGoogle Scholar
  59. 59.
    Heerema NA, Raimondi SC, Anderson JR, et al. Specific extra chromosomes occur in a modal number dependent pattern in pediatric acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2007;46(7):684–693.PubMedCrossRefGoogle Scholar
  60. 60.
    Trueworthy R, Shuster J, Look T, et al. Ploidy of lymphoblasts is the strongest predictor of treatment outcome in B-progenitor cell acute lymphoblastic leukemia of childhood: a Pediatric Oncology Group study. J Clin Oncol. 1992;10(4):606–613.PubMedGoogle Scholar
  61. 61.
    Synold TW, Relling MV, Boyett JM, et al. Blast cell methotrexate-polyglutamate accumulation in vivo differs by lineage, ploidy, and methotrexate dose in acute lymphoblastic leukemia. J Clin Invest. 1994;94(5):1996–2001.PubMedCrossRefGoogle Scholar
  62. 62.
    Whitehead VM, Vuchich MJ, Lauer SJ, et al. Accumulation of high levels of methotrexate polyglutamates in lymphoblasts from children with hyperdiploid (greater than 50 chromosomes) B-lineage acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood. 1992;80(5):1316–1323.PubMedGoogle Scholar
  63. 63.
    Kaspers GJ, Smets LA, Pieters R, Van Zantwijk CH, Van Wering ER, Veerman AJ. Favorable prognosis of hyperdiploid common acute lymphoblastic leukemia may be explained by sensitivity to antimetabolites and other drugs: results of an in vitro study. Blood. 1995;85(3):751–756.PubMedGoogle Scholar
  64. 64.
    Appel IM, Kazemier KM, Boos J, et al. Pharmacokinetic, pharmacodynamic and intracellular effects of PEG-asparaginase in newly diagnosed childhood acute lymphoblastic leukemia: results from a single agent window study. Leukemia. 2008;22(9):1665–1679.PubMedCrossRefGoogle Scholar
  65. 65.
    Ito C, Kumagai M, Manabe A, et al. Hyperdiploid acute lymphoblastic leukemia with 51 to 65 chromosomes: a distinct biological entity with a marked propensity to undergo apoptosis. Blood. 1999;93(1):315–320.PubMedGoogle Scholar
  66. 66.
    Bloomfield CD, Secker-Walker LM, Goldman AI, et al. Six-year follow-up of the clinical significance of karyotype in acute lymphoblastic leukemia. Cancer Genet Cytogenet. 1989;40(2):171–185.PubMedCrossRefGoogle Scholar
  67. 67.
    Harris MB, Shuster JJ, Carroll A, et al. Trisomy of leukemic cell chromosomes 4 and 10 identifies children with B-progenitor cell acute lymphoblastic leukemia with a very low risk of treatment failure: a Pediatric Oncology Group study. Blood. 1992;79(12):3316–3324.PubMedGoogle Scholar
  68. 68.
    Sutcliffe MJ, Shuster JJ, Sather HN, et al. High concordance from independent studies by the Children’s Cancer Group (CCG) and Pediatric Oncology Group (POG) associating favorable prognosis with combined trisomies 4, 10, and 17 in children with NCI Standard-Risk B-precursor Acute Lymphoblastic Leukemia: a Children’s Oncology Group (COG) initiative. Leukemia. 2005;19(5):734–740.PubMedCrossRefGoogle Scholar
  69. 69.
    Pui CH, Williams DL, Raimondi SC, et al. Hypodiploidy is associated with a poor prognosis in childhood acute lymphoblastic leukemia. Blood. 1987;70(1):247–253.PubMedGoogle Scholar
  70. 70.
    Raimondi SC, Zhou Y, Mathew S, et al. Reassessment of the prognostic significance of hypodiploidy in pediatric patients with acute lymphoblastic leukemia. Cancer. 2003;98(12):2715–2722.PubMedCrossRefGoogle Scholar
  71. 71.
    Nachman JB, Heerema NA, Sather H, et al. Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood. 2007;110(4):1112–1115.PubMedCrossRefGoogle Scholar
  72. 72.
    Wiemels JL, Cazzaniga G, Daniotti M, et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet. 1999;354(9189):1499–1503.PubMedCrossRefGoogle Scholar
  73. 73.
    Wiemels JL, Ford AM, Van Wering ER, Postma A, Greaves M. Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero. Blood. 1999;94(3):1057–1062.PubMedGoogle Scholar
  74. 74.
    Ensembl; Release 50, July 2008. Internet 2008 October 14.Google Scholar
  75. 75.
    McLean TW, Ringold S, Neuberg D, et al. TEL/AML-1 dimerizes and is associated with a favorable outcome in childhood acute lymphoblastic leukemia. Blood. 1996;88(11):4252–4258.PubMedGoogle Scholar
  76. 76.
    Stams WA, den Boer ML, Beverloo HB, et al. Expression levels of TEL, AML1, and the fusion products TEL-AML1 and AML1-TEL versus drug sensitivity and clinical outcome in t(12;21)-positive pediatric acute lymphoblastic leukemia. Clin Cancer Res. 2005;11(8):2974–2980.PubMedCrossRefGoogle Scholar
  77. 77.
    Cave H, Cacheux V, Raynaud S, et al. ETV6 is the target of chromosome 12p deletions in t(12;21) childhood acute lymphocytic leukemia. Leukemia. 1997;11(9):1459–1464.PubMedCrossRefGoogle Scholar
  78. 78.
    Raynaud S, Cave H, Baens M, et al. The 12;21 translocation involving TEL and deletion of the other TEL allele: two frequently associated alterations found in childhood acute lymphoblastic leukemia. Blood. 1996;87(7):2891–2899.PubMedGoogle Scholar
  79. 79.
    Romana SP, Le CM, Poirel H, Marynen P, Bernard O, Berger R. Deletion of the short arm of chromosome 12 is a secondary event in acute lymphoblastic leukemia with t(12;21). Leukemia. 1996;10(1):167–170.PubMedGoogle Scholar
  80. 80.
    Ma SK, Wan TS, Cheuk AT, et al. Characterization of additional genetic events in childhood acute lymphoblastic leukemia with TEL/AML1 gene fusion: a molecular cytogenetics study. Leukemia. 2001;15(9):1442–1447.PubMedCrossRefGoogle Scholar
  81. 81.
    Martinez-Ramirez A, Urioste M, Contra T, et al. Fluorescence in situ hybridization study of TEL/AML1 fusion and other abnormalities involving TEL and AML1 genes. Correlation with cytogenetic findings and prognostic value in children with acute lymphocytic leukemia. Haematologica. 2001;86(12):1245–1253.PubMedGoogle Scholar
  82. 82.
    Ameye G, Jacquy C, Zenebergh A, et al. The value of interphase fluorescence in situ hybridization for the detection of translocation t(12;21) in childhood acute lymphoblastic leukemia. Ann Hematol. 2000;79(5):259–268.PubMedCrossRefGoogle Scholar
  83. 83.
    Hart SM, Foroni L. Core binding factor genes and human leukemia. Haematologica. 2002;87(12):1307–1323.PubMedGoogle Scholar
  84. 84.
    Raimondi SC, Shurtleff SA, Downing JR, et al. 12p abnormalities and the TEL gene (ETV6) in childhood acute lymphoblastic leukemia. Blood. 1997;90(11):4559–4566.PubMedGoogle Scholar
  85. 85.
    Seeger K, Adams HP, Buchwald D, et al. TEL-AML1 fusion transcript in relapsed childhood acute lymphoblastic leukemia. The Berlin-Frankfurt-Munster Study Group. Blood. 1998;91(5):1716–1722.PubMedGoogle Scholar
  86. 86.
    Krishna NR, Navara C, Sarquis M, Uckun FM. Chemosensitivity of TEL-AML1 fusion transcript positive acute lymphoblastic leukemia cells. Leuk Lymphoma. 2001;41(5–6):615–623.Google Scholar
  87. 87.
    Ramakers-van Woerden NL, Pieters R, Loonen AH, et al. TEL/AML1 gene fusion is related to in vitro drug sensitivity for L-asparaginase in childhood acute lymphoblastic leukemia. Blood. 2000;96(3):1094–1099.PubMedGoogle Scholar
  88. 88.
    Loh ML, Silverman LB, Young ML, et al. Incidence of TEL/AML1 fusion in children with relapsed acute lymphoblastic leukemia. Blood. 1998;92(12):4792–4797.PubMedGoogle Scholar
  89. 89.
    Primo D, Tabernero MD, Rasillo A, et al. Patterns of BCR/ABL gene rearrangements by interphase fluorescence in situ hybridization (FISH) in BCR/ABL+ leukemias: incidence and underlying genetic abnormalities. Leukemia. 2003;17(6):1124–1129.PubMedCrossRefGoogle Scholar
  90. 90.
    Gutierrez MI, Timson G, Siraj AK, et al. Single monochrome real-time RT-PCR assay for identification, quantification, and breakpoint cluster region determination of t(9;22) transcripts. J Mol Diagn. 2005;7(1):40–47.PubMedGoogle Scholar
  91. 91.
    Ni H, Nitta M, Komatsu H, et al. Detection of bcr/abl fusion transcripts by semiquantitative multiplex RT-PCR combined with a colormetric assay in Ph positive leukemia. Cancer Lett. 1998;124(2):173–180.PubMedCrossRefGoogle Scholar
  92. 92.
    Saffroy R, Lemoine A, Brezillon P, et al. Real-time quantitation of bcr-abl transcripts in haematological malignancies. Eur J Haematol. 2000;65(4):258–266.PubMedCrossRefGoogle Scholar
  93. 93.
    Melo JV. The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood. 1996;88(7):2375–2384.PubMedGoogle Scholar
  94. 94.
    Hermans A, Heisterkamp N, von Linden M, et al. Unique fusion of bcr and c-abl genes in Philadelphia chromosome positive acute lymphoblastic leukemia. Cell. 1987;51(1):33–40.PubMedCrossRefGoogle Scholar
  95. 95.
    Mes-Masson AM, McLaughlin J, Daley GQ, Paskind M, Witte ON. Overlapping cDNA clones define the complete coding region for the P210c-abl gene product associated with chronic myelogenous leukemia cells containing the Philadelphia chromosome. Proc Natl Acad Sci USA. 1986;83(24):9768–9772.PubMedCrossRefGoogle Scholar
  96. 96.
    Shtivelman E, Lifshitz B, Gale RP, Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. 1985;315(6020):550–554.PubMedCrossRefGoogle Scholar
  97. 97.
    Shtivelman E, Lifshitz B, Gale RP, Roe BA, Canaani E. Alternative splicing of RNAs transcribed from the human abl gene and from the bcr-abl fused gene. Cell. 1986;47(2):277–284.PubMedCrossRefGoogle Scholar
  98. 98.
    DeKlein A, Hagemeijer A, Bartram CR, et al. bcr rearrangement and translocation of the c-abl oncogene in Philadelphia positive acute lymphoblastic leukemia. Blood. 1986;68(6):1369–1375.Google Scholar
  99. 99.
    Erikson J, Griffin CA. ar-Rushdi A et al. Heterogeneity of chromosome 22 breakpoint in Philadelphia-positive (Ph+) acute lymphocytic leukemia. Proc Natl Acad Sci USA. 1986;83(6):1807-1811.PubMedCrossRefGoogle Scholar
  100. 100.
    Kurzrock R, Shtalrid M, Gutterman JU, et al. Molecular analysis of chromosome 22 breakpoints in adult Philadelphia-positive acute lymphoblastic leukaemia. Br J Haematol. 1987;67(1):55–59.PubMedCrossRefGoogle Scholar
  101. 101.
    Chen SJ, Chen Z, Hillion J, et al. Ph1-positive, bcr-negative acute leukemias: clustering of breakpoints on chromosome 22 in the 3′ end of the BCR gene first intron. Blood. 1989;73(5):1312–1315.PubMedGoogle Scholar
  102. 102.
    Heisterkamp N, Jenkins R, Thibodeau S, Testa JR, Weinberg K, Groffen J. The bcr gene in Philadelphia chromosome positive acute lymphoblastic leukemia. Blood. 1989;73(5):1307–1311.PubMedGoogle Scholar
  103. 103.
    Rubin CM, Carrino JJ, Dickler MN, Leibowitz D, Smith SD, Westbrook CA. Heterogeneity of genomic fusion of BCR and ABL in Philadelphia chromosome-positive acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 1988;85(8):2795–2799.PubMedCrossRefGoogle Scholar
  104. 104.
    Kurzrock R, Shtalrid M, Romero P, et al. A novel c-abl protein product in Philadelphia-positive acute lymphoblastic leukaemia. Nature. 1987;325(6105):631–635.PubMedCrossRefGoogle Scholar
  105. 105.
    Clark SS, McLaughlin J, Crist WM, Champlin R, Witte ON. Unique forms of the abl tyrosine kinase distinguish Ph1-positive CML from Ph1-positive ALL. Science. 1987;235(4784):85–88.PubMedCrossRefGoogle Scholar
  106. 106.
    Chan LC, Karhi KK, Rayter SI, et al. A novel abl protein expressed in Philadelphia chromosome positive acute lymphoblastic leukaemia. Nature. 1987;325(6105):635–637.PubMedCrossRefGoogle Scholar
  107. 107.
    Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D. The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science. 1986;233(4760):212–214.PubMedCrossRefGoogle Scholar
  108. 108.
    Gleissner B, Gokbuget N, Bartram CR, et al. Leading prognostic relevance of the BCR-ABL translocation in adult acute B-lineage lymphoblastic leukemia: a prospective study of the German Multicenter Trial Group and confirmed polymerase chain reaction analysis. Blood. 2002;99(5):1536–1543.PubMedCrossRefGoogle Scholar
  109. 109.
    Ko BS, Tang JL, Lee FY, et al. Additional chromosomal abnormalities and variability of BCR breakpoints in Philadelphia chromosome/BCR-ABL-positive acute lymphoblastic leukemia in Taiwan. Am J Hematol. 2002;71(4):291–299.PubMedCrossRefGoogle Scholar
  110. 110.
    Radich JP, Kopecky KJ, Boldt DH, et al. Detection of BCR-ABL fusion genes in adult acute lymphoblastic leukemia by the polymerase chain reaction. Leukemia. 1994;8(10):1688–1695.PubMedGoogle Scholar
  111. 111.
    Secker-Walker LM, Cooke HM, Browett PJ, et al. Variable Philadelphia breakpoints and potential lineage restriction of bcr rearrangement in acute lymphoblastic leukemia. Blood. 1988;72(2):784–791.PubMedGoogle Scholar
  112. 112.
    Secker-Walker LM, Craig JM, Hawkins JM, Hoffbrand AV. Philadelphia positive acute lymphoblastic leukemia in adults: age distribution, BCR breakpoint and prognostic significance. Leukemia. 1991;5(3):196–199.PubMedGoogle Scholar
  113. 113.
    Suryanarayan K, Hunger SP, Kohler S, et al. Consistent involvement of the bcr gene by 9;22 breakpoints in pediatric acute leukemias. Blood. 1991;77(2):324–330.PubMedGoogle Scholar
  114. 114.
    Konopka JB, Watanabe SM, Witte ON. An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell. 1984;37(3):1035–1042.PubMedCrossRefGoogle Scholar
  115. 115.
    Arlinghaus RB. Bcr: a negative regulator of the Bcr-Abl oncoprotein in leukemia. Oncogene. 2002;21(56):8560–8567.PubMedCrossRefGoogle Scholar
  116. 116.
    Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science. 1990;247(4944):824–830.PubMedCrossRefGoogle Scholar
  117. 117.
    Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science. 1990;247(4946):1079–1082.PubMedCrossRefGoogle Scholar
  118. 118.
    Secker-Walker LM. The prognostic implications of chromosomal findings in acute lymphoblastic leukemia. Cancer Genet Cytogenet. 1984;11(2):233–248.PubMedCrossRefGoogle Scholar
  119. 119.
    Fletcher JA, Kimball VM, Lynch E, et al. Prognostic implications of cytogenetic studies in an intensively treated group of children with acute lymphoblastic leukemia. Blood. 1989;74(6):2130–2135.PubMedGoogle Scholar
  120. 120.
    Ribeiro RC, Abromowitch M, Raimondi SC, Murphy SB, Behm F, Williams DL. Clinical and biologic hallmarks of the Philadelphia chromosome in childhood acute lymphoblastic leukemia. Blood. 1987;70(4):948–953.PubMedGoogle Scholar
  121. 121.
    Crist W, Carroll A, Shuster J, et al. Philadelphia chromosome positive childhood acute lymphoblastic leukemia: clinical and cytogenetic characteristics and treatment outcome. A Pediatric Oncology Group study. Blood. 1990;76(3):489–494.PubMedGoogle Scholar
  122. 122.
    Arico M, Valsecchi MG, Camitta B, et al. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med. 2000;342(14):998–1006.PubMedCrossRefGoogle Scholar
  123. 123.
    Secker-Walker LM, Craig JM. Prognostic implications of breakpoint and lineage heterogeneity in Philadelphia-positive acute lymphoblastic leukemia: a review. Leukemia. 1993;7(2):147–151.PubMedGoogle Scholar
  124. 124.
    Nachman JB, Sather HN, Sensel MG, et al. Augmented post-induction therapy for children with high-risk acute lymphoblastic leukemia and a slow response to initial therapy. N Engl J Med. 1998;338(23):1663–1671.PubMedCrossRefGoogle Scholar
  125. 125.
    Roy A, Bradburn M, Moorman AV, et al. Early response to induction is predictive of survival in childhood Philadelphia chromosome positive acute lymphoblastic leukaemia: results of the Medical Research Council ALL 97 trial. Br J Haematol. 2005;129(1):35–44.PubMedCrossRefGoogle Scholar
  126. 126.
    Marks DI, Bird JM, Cornish JM, et al. Unrelated donor bone marrow transplantation for children and adolescents with Philadelphia-positive acute lymphoblastic leukemia. J Clin Oncol. 1998;16(3):931–936.PubMedGoogle Scholar
  127. 127.
    Mori T, Manabe A, Tsuchida M, et al. Allogeneic bone marrow transplantation in first remission rescues children with Philadelphia chromosome-positive acute lymphoblastic leukemia: Tokyo Children’s Cancer Study Group (TCCSG) studies L89-12 and L92-13. Med Pediatr Oncol. 2001;37(5):426–431.PubMedCrossRefGoogle Scholar
  128. 128.
    Satwani P, Sather H, Ozkaynak F, et al. Allogeneic bone marrow transplantation in first remission for children with ultra-high-risk features of acute lymphoblastic leukemia: a children’s oncology group study report. Biol Blood Marrow Transplant. 2007;13(2):218–227.PubMedCrossRefGoogle Scholar
  129. 129.
    Sharathkumar A, Saunders EF, Dror Y, et al. Allogeneic bone marrow transplantation vs chemotherapy for children with Philadelphia chromosome-positive acute lymphoblastic leukemia. Bone Marrow Transplant. 2004;33(1):39–45.PubMedCrossRefGoogle Scholar
  130. 130.
    Wheeler KA, Richards SM, Bailey CC, et al. Bone marrow transplantation versus chemotherapy in the treatment of very high-risk childhood acute lymphoblastic leukemia in first remission: results from Medical Research Council UKALL X and XI. Blood. 2000;96(7):2412–2418.PubMedGoogle Scholar
  131. 131.
    Cornelissen JJ, Carston M, Kollman C, et al. Unrelated marrow transplantation for adult patients with poor-risk acute lymphoblastic leukemia: strong graft-versus-leukemia effect and risk factors determining outcome. Blood. 2001;97(6):1572–1577.PubMedCrossRefGoogle Scholar
  132. 132.
    Durrant IJ, Richards SM, Prentice HG, Goldstone AH. The Medical Research Council trials in adult acute lymphocytic leukemia. Hematol Oncol Clin North Am. 2000;14(6):1327–1352.PubMedCrossRefGoogle Scholar
  133. 133.
    Fiere D, Lepage E, Sebban C, et al. Adult acute lymphoblastic leukemia: a multicentric randomized trial testing bone marrow transplantation as postremission therapy. The French Group on Therapy for Adult Acute Lymphoblastic Leukemia. J Clin Oncol. 1993;11(10):1990–2001.PubMedGoogle Scholar
  134. 134.
    Goldstone AH, Richards SM, Lazarus HM, et al. In adults with standard-risk acute lymphoblastic leukemia, the greatest benefit is achieved from a matched sibling allogeneic transplantation in first complete remission, and an autologous transplantation is less effective than conventional consolidation/maintenance chemotherapy in all patients: final results of the International ALL Trial (MRC UKALL XII/ECOG E2993). Blood. 2008;111(4):1827–1833.PubMedCrossRefGoogle Scholar
  135. 135.
    Ottmann OG, Wassmann B. Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2005;118–122.Google Scholar
  136. 136.
    Chao NJ, Blume KG, Forman SJ, Snyder DS. Long-term follow-up of allogeneic bone marrow recipients for Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 1995;85(11):3353–3354.PubMedGoogle Scholar
  137. 137.
    Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001;344(14):1038–1042.PubMedCrossRefGoogle Scholar
  138. 138.
    Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344(14):1031–1037.PubMedCrossRefGoogle Scholar
  139. 139.
    Ottmann OG, Druker BJ, Sawyers CL, et al. A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood. 2002;100(6):1965–1971.PubMedCrossRefGoogle Scholar
  140. 140.
    Ottmann OG, Wassmann B, Pfeifer H, et al. Imatinib compared with chemotherapy as front-line treatment of elderly patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph + ALL). Cancer. 2007;109(10):2068–2076.PubMedCrossRefGoogle Scholar
  141. 141.
    Bhatia R, Holtz M, Niu N, et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood. 2003;101(12):4701–4707.PubMedCrossRefGoogle Scholar
  142. 142.
    Hughes TP, Kaeda J, Branford S, et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med. 2003;349(15):1423–1432.PubMedCrossRefGoogle Scholar
  143. 143.
    Branford S, Rudzki Z, Walsh S, et al. High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood. 2002;99(9):3472–3475.PubMedCrossRefGoogle Scholar
  144. 144.
    Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293(5531):876–880.PubMedCrossRefGoogle Scholar
  145. 145.
    Jones D, Thomas D, Yin CC, et al. Kinase domain point mutations in Philadelphia chromosome-positive acute lymphoblastic leukemia emerge after therapy with BCR-ABL kinase inhibitors. Cancer. 2008;113(5):985–994.PubMedCrossRefGoogle Scholar
  146. 146.
    Champagne MA, Capdeville R, Krailo M, et al. Imatinib mesylate (STI571) for treatment of children with Philadelphia chromosome-positive leukemia: results from a Children’s Oncology Group phase 1 study. Blood. 2004;104(9):2655–2660.PubMedCrossRefGoogle Scholar
  147. 147.
    Fuster JL, Bermudez M, Galera A, Llinares ME, Calle D, Ortuno FJ. Imatinib mesylate in combination with chemotherapy in four children with de novo and advanced stage Philadelphia chromosome-positive acute lymphoblastic leukemia. Haematologica. 2007;92(12):1723–1724.PubMedCrossRefGoogle Scholar
  148. 148.
    Schultz KR, Bowman WP, Slayton W, et al. Improved Early Event Free Survival (EFS) in Children with Philadelphia Chromosome-Positive (Ph+) Acute Lymphoblastic Leukemia (ALL) with Intensive Imatinib in Combination with High Dose Chemotherapy: Children’s Oncology Group (COG) Study AALL0031. ASH Annual Meeting Abstracts. 2007;110(11):4.Google Scholar
  149. 149.
    Keam SJ. Dasatinib: in chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. BioDrugs. 2008;22(1):59–69.PubMedCrossRefGoogle Scholar
  150. 150.
    Steinberg M. Dasatinib: a tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. Clin Ther. 2007;29(11):2289–2308.PubMedCrossRefGoogle Scholar
  151. 151.
    Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med. 2006;354(24):2531–2541.PubMedCrossRefGoogle Scholar
  152. 152.
    Ottmann O, Dombret H, Martinelli G, et al. Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study. Blood. 2007;110(7):2309–2315.PubMedCrossRefGoogle Scholar
  153. 153.
    Chen CS, Sorensen PH, Domer PH, et al. Molecular rearrangements on chromosome 11q23 predominate in infant acute lymphoblastic leukemia and are associated with specific biologic variables and poor outcome. Blood. 1993;81(9):2386–2393.PubMedGoogle Scholar
  154. 154.
    Pui CH, Behm FG, Downing JR, et al. 11q23/MLL rearrangement confers a poor prognosis in infants with acute lymphoblastic leukemia. J Clin Oncol. 1994;12(5):909–915.PubMedGoogle Scholar
  155. 155.
    Rubnitz JE, Link MP, Shuster JJ, et al. Frequency and prognostic significance of HRX rearrangements in infant acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood. 1994;84(2):570–573.PubMedGoogle Scholar
  156. 156.
    Ford AM, Ridge SA, Cabrera ME, et al. In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature. 1993;363(6427):358–360.PubMedCrossRefGoogle Scholar
  157. 157.
    Gale KB, Ford AM, Repp R, et al. Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci USA. 1997;94(25):13950–13954.PubMedCrossRefGoogle Scholar
  158. 158.
    Gill Super HJ, Rothberg PG, Kobayashi H, Freeman AI, Diaz MO, Rowley JD. Clonal, nonconstitutional rearrangements of the MLL gene in infant twins with acute lymphoblastic leukemia: in utero chromosome rearrangement of 11q23. Blood. 1994;83(3):641–644.PubMedGoogle Scholar
  159. 159.
    Cimino G, Rapanotti MC, Sprovieri T, Elia L. ALL1 gene alterations in acute leukemia: biological and clinical aspects. Haematologica. 1998;83(4):350–357.PubMedGoogle Scholar
  160. 160.
    Milne TA, Briggs SD, Brock HW, et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell. 2002;10(5):1107–1117.PubMedCrossRefGoogle Scholar
  161. 161.
    Jenuwein T, Laible G, Dorn R, Reuter G. SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cell Mol Life Sci. 1998;54(1):80–93.PubMedCrossRefGoogle Scholar
  162. 162.
    Prasad R, Yano T, Sorio C, et al. Domains with transcriptional regulatory activity within the ALL1 and AF4 proteins involved in acute leukemia. Proc Natl Acad Sci USA. 1995;92(26):12160–12164.PubMedCrossRefGoogle Scholar
  163. 163.
    Caslini C, Alarcon AS, Hess JL, Tanaka R, Murti KG, Biondi A. The amino terminus targets the mixed lineage leukemia (MLL) protein to the nucleolus, nuclear matrix and mitotic chromosomal scaffolds. Leukemia. 2000;14(11):1898–1908.PubMedCrossRefGoogle Scholar
  164. 164.
    Caslini C, Shilatifard A, Yang L, Hess JL. The amino terminus of the mixed lineage leukemia protein (MLL) promotes cell cycle arrest and monocytic differentiation. Proc Natl Acad Sci USA. 2000;97(6):2797–2802.PubMedCrossRefGoogle Scholar
  165. 165.
    Lawrence HJ, Sauvageau G, Humphries RK, Largman C. The role of HOX homeobox genes in normal and leukemic hematopoiesis. Stem Cells. 1996;14(3):281–291.PubMedCrossRefGoogle Scholar
  166. 166.
    Ernst P, Mabon M, Davidson AJ, Zon LI, Korsmeyer SJ. An Mll-dependent Hox program drives hematopoietic progenitor expansion. Curr Biol. 2004;14(22):2063–2069.PubMedCrossRefGoogle Scholar
  167. 167.
    Milne TA, Martin ME, Brock HW, Slany RK, Hess JL. Leukemogenic MLL fusion proteins bind across a broad region of the Hox a9 locus, promoting transcription and multiple histone modifications. Cancer Res. 2005;65(24):11367–11374.PubMedCrossRefGoogle Scholar
  168. 168.
    Milne TA, Dou Y, Martin ME, Brock HW, Roeder RG, Hess JL. MLL associates specifically with a subset of transcriptionally active target genes. Proc Natl Acad Sci USA. 2005;102(41):14765–14770.PubMedCrossRefGoogle Scholar
  169. 169.
    Domer PH, Fakharzadeh SS, Chen CS, et al. Acute mixed-lineage leukemia t(4;11)(q21;q23) generates an MLL-AF4 fusion product. Proc Natl Acad Sci USA. 1993;90(16):7884–7888.PubMedCrossRefGoogle Scholar
  170. 170.
    Gu Y, Nakamura T, Alder H, et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell. 1992;71(4):701–708.PubMedCrossRefGoogle Scholar
  171. 171.
    Nakamura T, Alder H, Gu Y, et al. Genes on chromosomes 4, 9, and 19 involved in 11q23 abnormalities in acute leukemia share sequence homology and/or common motifs. Proc Natl Acad Sci USA. 1993;90(10):4631–4635.PubMedCrossRefGoogle Scholar
  172. 172.
    Tkachuk DC, Kohler S, Cleary ML. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell. 1992;71(4):691–700.PubMedCrossRefGoogle Scholar
  173. 173.
    Biondi A, Rambaldi A, Rossi V, et al. Detection of ALL-1/AF4 fusion transcript by reverse transcription-polymerase chain reaction for diagnosis and monitoring of acute leukemias with the t(4;11) translocation. Blood. 1993;82(10):2943–2947.PubMedGoogle Scholar
  174. 174.
    Broeker PL, Super HG, Thirman MJ, et al. Distribution of 11q23 breakpoints within the MLL breakpoint cluster region in de novo acute leukemia and in treatment-related acute myeloid leukemia: correlation with scaffold attachment regions and topoisomerase II consensus binding sites. Blood. 1996;87(5):1912–1922.PubMedGoogle Scholar
  175. 175.
    Corral J, Forster A, Thompson S, et al. Acute leukemias of different lineages have similar MLL gene fusions encoding related chimeric proteins resulting from chromosomal translocation. Proc Natl Acad Sci USA. 1993;90(18):8538–8542.PubMedCrossRefGoogle Scholar
  176. 176.
    Felix CA, Hosler MR, Slater DJ, et al. MLL genomic breakpoint distribution within the breakpoint cluster region in de novo leukemia in children. J Pediatr Hematol Oncol. 1998;20(4):299–308.PubMedCrossRefGoogle Scholar
  177. 177.
    Hilden JM, Chen CS, Moore R, Frestedt J, Kersey JH. Heterogeneity in MLL/AF-4 fusion messenger RNA detected by the polymerase chain reaction in t(4;11) acute leukemia. Cancer Res. 1993;53(17):3853–3856.PubMedGoogle Scholar
  178. 178.
    Langer T, Metzler M, Reinhardt D, et al. Analysis of t(9;11) chromosomal breakpoint sequences in childhood acute leukemia: almost identical MLL breakpoints in therapy-related AML after treatment without etoposides. Genes Chromosomes Cancer. 2003;36(4):393–401.PubMedCrossRefGoogle Scholar
  179. 179.
    Thirman MJ, Gill HJ, Burnett RC, et al. Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocations. N Engl J Med. 1993;329(13):909–914.PubMedCrossRefGoogle Scholar
  180. 180.
    Rowley JD. Rearrangements involving chromosome band 11Q23 in acute leukaemia. Semin Cancer Biol. 1993;4(6):377–385.PubMedGoogle Scholar
  181. 181.
    Daser A, Rabbitts TH. The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis. Semin Cancer Biol. 2005;15(3):175–188.PubMedCrossRefGoogle Scholar
  182. 182.
    Baskaran K, Erfurth F, Taborn G, et al. Cloning and developmental expression of the murine homolog of the acute leukemia proto-oncogene AF4. Oncogene. 1997;15(16):1967–1978.PubMedCrossRefGoogle Scholar
  183. 183.
    Rubnitz JE, Morrissey J, Savage PA, Cleary ML. ENL, the gene fused with HRX in t(11;19) leukemias, encodes a nuclear protein with transcriptional activation potential in lymphoid and myeloid cells. Blood. 1994;84(6):1747–1752.PubMedGoogle Scholar
  184. 184.
    Schreiner SA, Garcia-Cuellar MP, Fey GH, Slany RK. The leukemogenic fusion of MLL with ENL creates a novel transcriptional transactivator. Leukemia. 1999;13(10):1525–1533.PubMedCrossRefGoogle Scholar
  185. 185.
    Frestedt JL, Hilden JM, Kersey JH. AF4/FEL, a gene involved in infant leukemia: sequence variations, gene structure, and possible homology with a genomic sequence on 5q31. DNA Cell Biol. 1996;15(8):669–678.PubMedCrossRefGoogle Scholar
  186. 186.
    Lavau C, Szilvassy SJ, Slany R, Cleary ML. Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J. 1997;16(14):4226–4237.PubMedCrossRefGoogle Scholar
  187. 187.
    Corral J, Lavenir I, Impey H, et al. An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell. 1996;85(6):853–861.PubMedCrossRefGoogle Scholar
  188. 188.
    Dobson CL, Warren AJ, Pannell R, et al. The mll-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis. EMBO J. 1999;18(13):3564–3574.PubMedCrossRefGoogle Scholar
  189. 189.
    Garcia-Cuellar MP, Zilles O, Schreiner SA, Birke M, Winkler TH, Slany RK. The ENL moiety of the childhood leukemia-associated MLL-ENL oncoprotein recruits human Polycomb 3. Oncogene. 2001;20(4):411–419.PubMedCrossRefGoogle Scholar
  190. 190.
    Zeisig BB, Milne T, Garcia-Cuellar MP, et al. Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Mol Cell Biol. 2004;24(2):617–628.PubMedCrossRefGoogle Scholar
  191. 191.
    Collins EC, Appert A. riza-McNaughton L, Pannell R, Yamada Y, Rabbitts TH. Mouse Af9 is a controller of embryo patterning, like Mll, whose human homologue fuses with Af9 after chromosomal translocation in leukemia. Mol Cell Biol. 2002;22(20):7313–7324.PubMedCrossRefGoogle Scholar
  192. 192.
    Prasad R, Leshkowitz D, Gu Y, et al. Leucine-zipper dimerization motif encoded by the AF17 gene fused to ALL-1 (MLL) in acute leukemia. Proc Natl Acad Sci USA. 1994;91(17):8107–8111.PubMedCrossRefGoogle Scholar
  193. 193.
    Arthur DC, Bloomfield CD, Lindquist LL, Nesbit ME Jr. Translocation 4; 11 in acute lymphoblastic leukemia: clinical characteristics and prognostic significance. Blood. 1982;59(1):96–99.PubMedGoogle Scholar
  194. 194.
    Chessells JM, Harrison CJ, Kempski H, et al. Clinical features, cytogenetics and outcome in acute lymphoblastic and myeloid leukaemia of infancy: report from the MRC Childhood Leukaemia working party. Leukemia. 2002;16(5):776–784.PubMedCrossRefGoogle Scholar
  195. 195.
    Hann I, Vora A, Harrison G, et al. Determinants of outcome after intensified therapy of childhood lymphoblastic leukaemia: results from Medical Research Council United Kingdom acute lymphoblastic leukaemia XI protocol. Br J Haematol. 2001;113(1):103–114.PubMedCrossRefGoogle Scholar
  196. 196.
    Heerema NA, Arthur DC, Sather H, et al. Cytogenetic features of infants less than 12 months of age at diagnosis of acute lymphoblastic leukemia: impact of the 11q23 breakpoint on outcome: a report of the Childrens Cancer Group. Blood. 1994;83(8):2274–2284.PubMedGoogle Scholar
  197. 197.
    Johansson B, Moorman AV, Haas OA, et al. Hematologic malignancies with t(4;11)(q21;q23) – a cytogenetic, morphologic, immunophenotypic and clinical study of 183 cases. European 11q23 Workshop participants. Leukemia. 1998;12(5):779–787.PubMedCrossRefGoogle Scholar
  198. 198.
    Pui CH, Carroll LA, Raimondi SC, Shuster JJ, Crist WM, Pullen DJ. Childhood acute lymphoblastic leukemia with the t(4;11)(q21;q23): an update. Blood. 1994;83(8):2384–2385.PubMedGoogle Scholar
  199. 199.
    Pui CH, Gaynon PS, Boyett JM, et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet. 2002;359(9321):1909–1915.PubMedCrossRefGoogle Scholar
  200. 200.
    Pui CH, Chessells JM, Camitta B, et al. Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia. 2003;17(4):700–706.PubMedCrossRefGoogle Scholar
  201. 201.
    Reaman GH, Sposto R, Sensel MG, et al. Treatment outcome and prognostic factors for infants with acute lymphoblastic leukemia treated on two consecutive trials of the Children’s Cancer Group. J Clin Oncol. 1999;17(2):445–455.PubMedGoogle Scholar
  202. 202.
    Rubnitz JE, Camitta BM, Mahmoud H, et al. Childhood acute lymphoblastic leukemia with the MLL-ENL fusion and t(11;19)(q23;p13.3) translocation. J Clin Oncol. 1999;17(1):191–196.PubMedGoogle Scholar
  203. 203.
    Moorman AV, Raimondi SC, Pui CH, et al. No prognostic effect of additional chromosomal abnormalities in children with acute lymphoblastic leukemia and 11q23 abnormalities. Leukemia. 2005;19(4):557–563.PubMedGoogle Scholar
  204. 204.
    Chessells JM, Harrison CJ, Watson SL, Vora AJ, Richards SM. Treatment of infants with lymphoblastic leukaemia: results of the UK Infant Protocols 1987–1999. Br J Haematol. 2002;117(2):306–314.PubMedCrossRefGoogle Scholar
  205. 205.
    Balduzzi A, Valsecchi MG, Uderzo C, et al. Chemotherapy versus allogeneic transplantation for very-high-risk childhood acute lymphoblastic leukaemia in first complete remission: comparison by genetic randomisation in an international prospective study. Lancet. 2005;366(9486):635–642.PubMedCrossRefGoogle Scholar
  206. 206.
    Jacobsohn DA, Hewlett B, Morgan E, Tse W, Duerst RE, Kletzel M. Favorable outcome for infant acute lymphoblastic leukemia after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2005;11(12):999–1005.PubMedCrossRefGoogle Scholar
  207. 207.
    Saarinen-Pihkala UM, Gustafsson G, Carlsen N, et al. Outcome of children with high-risk acute lymphoblastic leukemia (HR-ALL): Nordic results on an intensive regimen with restricted central nervous system irradiation. Pediatr Blood Cancer. 2004;42(1):8–23.PubMedCrossRefGoogle Scholar
  208. 208.
    Shikano T, Kaneko Y, Takazawa M, Ueno N, Ohkawa M, Fujimoto T. Balanced and unbalanced 1;19 translocation-associated acute lymphoblastic leukemias. Cancer. 1986;58(10):2239–2243.PubMedCrossRefGoogle Scholar
  209. 209.
    Mellentin JD, Murre C, Donlon TA, et al. The gene for enhancer binding proteins E12/E47 lies at the t(1;19) breakpoint in acute leukemias. Science. 1989;246(4928):379–382.PubMedCrossRefGoogle Scholar
  210. 210.
    Mellentin JD, Nourse J, Hunger SP, Smith SD, Cleary ML. Molecular analysis of the t(1;19) breakpoint cluster region in pre-B cell acute lymphoblastic leukemias. Genes Chromosomes Cancer. 1990;2(3):239–247.PubMedCrossRefGoogle Scholar
  211. 211.
    Kamps MP, Murre C, Sun XH, Baltimore D. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell. 1990;60(4):547–555.PubMedCrossRefGoogle Scholar
  212. 212.
    Nourse J, Mellentin JD, Galili N, et al. Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell. 1990;60(4):535–545.PubMedCrossRefGoogle Scholar
  213. 213.
    Hunger SP, Galili N, Carroll AJ, Crist WM, Link MP, Cleary ML. The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias. Blood. 1991;77(4):687–693.PubMedGoogle Scholar
  214. 214.
    Murre C, McCaw PS, Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell. 1989;56(5):777–783.PubMedCrossRefGoogle Scholar
  215. 215.
    Rauskolb C, Peifer M, Wieschaus E. extradenticle, a regulator of homeotic gene activity, is a homolog of the homeobox-containing human proto-oncogene pbx1. Cell. 1993;74(6):1101–1112.PubMedCrossRefGoogle Scholar
  216. 216.
    Flegel WA, Singson AW, Margolis JS, Bang AG, Posakony JW, Murre C. Dpbx, a new homeobox gene closely related to the human proto-oncogene pbx1 molecular structure and developmental expression. Mech Dev. 1993;41(2–3):155–161.PubMedCrossRefGoogle Scholar
  217. 217.
    Moens CB, Selleri L. Hox cofactors in vertebrate development. Dev Biol. 2006;291(2):193–206.PubMedCrossRefGoogle Scholar
  218. 218.
    Mann RS, Chan SK. Extra specificity from extradenticle: the partnership between HOX and PBX/EXD homeodomain proteins. Trends Genet. 1996;12(7):258–262.PubMedCrossRefGoogle Scholar
  219. 219.
    Lu Q, Wright DD, Kamps MP. Fusion with E2A converts the Pbx1 homeodomain protein into a constitutive transcriptional activator in human leukemias carrying the t(1;19) translocation. Mol Cell Biol. 1994;14(6):3938–3948.PubMedGoogle Scholar
  220. 220.
    Kamps MP, Look AT, Baltimore D. The human t(1;19) translocation in pre-B ALL produces multiple nuclear E2A-Pbx1 fusion proteins with differing transforming potentials. Genes Dev. 1991;5(3):358–368.PubMedCrossRefGoogle Scholar
  221. 221.
    Dedera DA, Waller EK, LeBrun DP, et al. Chimeric homeobox gene E2A-PBX1 induces proliferation, apoptosis, and malignant lymphomas in transgenic mice. Cell. 1993;74(5):833–843.PubMedCrossRefGoogle Scholar
  222. 222.
    Kamps MP, Baltimore D. E2A-Pbx1, the t(1;19) translocation protein of human pre-B-cell acute lymphocytic leukemia, causes acute myeloid leukemia in mice. Mol Cell Biol. 1993;13(1):351–357.PubMedGoogle Scholar
  223. 223.
    Hunger SP. Chromosomal translocations involving the E2A gene in acute lymphoblastic leukemia: clinical features and molecular pathogenesis. Blood. 1996;87(4):1211–1224.PubMedGoogle Scholar
  224. 224.
    Knoepfler PS, Kamps MP. The pentapeptide motif of Hox proteins is required for cooperative DNA binding with Pbx1, physically contacts Pbx1, and enhances DNA binding by Pbx1. Mol Cell Biol. 1995;15(10):5811–5819.PubMedGoogle Scholar
  225. 225.
    Knoepfler PS, Kamps MP. The highest affinity DNA element bound by Pbx complexes in t(1;19) leukemic cells fails to mediate cooperative DNA-binding or cooperative transactivation by E2a-Pbx1 and class I Hox proteins – evidence for selective targetting of E2a-Pbx1 to a subset of Pbx-recognition elements. Oncogene. 1997;14(21):2521–2531.PubMedCrossRefGoogle Scholar
  226. 226.
    Knoepfler PS, Sykes DB, Pasillas M, Kamps MP. HoxB8 requires its Pbx-interaction motif to block differentiation of primary myeloid progenitors and of most cell line models of myeloid differentiation. Oncogene. 2001;20(39):5440–5448.PubMedCrossRefGoogle Scholar
  227. 227.
    Lu Q, Kamps MP. Structural determinants within Pbx1 that mediate cooperative DNA binding with pentapeptide-containing Hox proteins: proposal for a model of a Pbx1-Hox-DNA complex. Mol Cell Biol. 1996;16(4):1632–1640.PubMedGoogle Scholar
  228. 228.
    Phelan ML, Rambaldi I, Featherstone MS. Cooperative interactions between HOX and PBX proteins mediated by a conserved peptide motif. Mol Cell Biol. 1995;15(8):3989–3997.PubMedGoogle Scholar
  229. 229.
    Lu Q, Kamps MP. Heterodimerization of Hox proteins with Pbx1 and oncoprotein E2a-Pbx1 generates unique DNA-binding specifities at nucleotides predicted to contact the N-terminal arm of the Hox homeodomain–demonstration of Hox-dependent targeting of E2a-Pbx1 in vivo. Oncogene. 1997;14(1):75–83.PubMedCrossRefGoogle Scholar
  230. 230.
    Chang CP, de Vivo I, Cleary ML. The Hox cooperativity motif of the chimeric oncoprotein E2a-Pbx1 is necessary and sufficient for oncogenesis. Mol Cell Biol. 1997;17(1):81–88.PubMedGoogle Scholar
  231. 231.
    Knoepfler PS, Calvo KR, Chen H, Antonarakis SE, Kamps MP. Meis1 and pKnox1 bind DNA cooperatively with Pbx1 utilizing an interaction surface disrupted in oncoprotein E2a-Pbx1. Proc Natl Acad Sci USA. 1997;94(26):14553–14558.PubMedCrossRefGoogle Scholar
  232. 232.
    Chang CP, Jacobs Y, Nakamura T, Jenkins NA, Copeland NG, Cleary ML. Meis proteins are major in vivo DNA binding partners for wild-type but not chimeric Pbx proteins. Mol Cell Biol. 1997;17(10):5679–5687.PubMedGoogle Scholar
  233. 233.
    Thorsteinsdottir U, Krosl J, Kroon E, Haman A, Hoang T, Sauvageau G. The oncoprotein E2A-Pbx1a collaborates with Hoxa9 to acutely transform primary bone marrow cells. Mol Cell Biol. 1999;19(9):6355–6366.PubMedGoogle Scholar
  234. 234.
    Lu Q, Kamps MP. Selective repression of transcriptional activators by Pbx1 does not require the homeodomain. Proc Natl Acad Sci USA. 1996;93(1):470–474.PubMedCrossRefGoogle Scholar
  235. 235.
    McWhirter JR, Goulding M, Weiner JA, Chun J, Murre C. A novel fibroblast growth factor gene expressed in the developing nervous system is a downstream target of the chimeric homeodomain oncoprotein E2A-Pbx1. Development. 1997;124(17):3221–3232.PubMedGoogle Scholar
  236. 236.
    de Lau WB, Hurenkamp J, Berendes P, Touw IP, Clevers HC, van Dijk MA. The gene encoding the granulocyte colony-stimulating factor receptor is a target for deregulation in pre-B ALL by the t(1;19)-specific oncoprotein E2A-Pbx1. Oncogene. 1998;17(4):503–510.PubMedCrossRefGoogle Scholar
  237. 237.
    Fu X, McGrath S, Pasillas M, Nakazawa S, Kamps MP. EB-1, a tyrosine kinase signal transduction gene, is transcriptionally activated in the t(1;19) subset of pre-B ALL, which express oncoprotein E2a-Pbx1. Oncogene. 1999;18(35):4920–4929.PubMedCrossRefGoogle Scholar
  238. 238.
    McWhirter JR, Neuteboom ST, Wancewicz EV, Monia BP, Downing JR, Murre C. Oncogenic homeodomain transcription factor E2A-Pbx1 activates a novel WNT gene in pre-B acute lymphoblastoid leukemia. Proc Natl Acad Sci USA. 1999;96(20):11464–11469.PubMedCrossRefGoogle Scholar
  239. 239.
    Fu X, Roberts WG, Nobile V, Shapiro R, Kamps MP. mAngiogenin-3, a target gene of oncoprotein E2a-Pbx1, encodes a new angiogenic member of the angiogenin family. Growth Factors. 1999;17(2):125–137.PubMedCrossRefGoogle Scholar
  240. 240.
    Kagawa N, Ogo A, Takahashi Y, Iwamatsu A, Waterman MR. A cAMP-regulatory sequence (CRS1) of CYP17 is a cellular target for the homeodomain protein Pbx1. J Biol Chem. 1994;269(29):18716–18719.PubMedGoogle Scholar
  241. 241.
    Ogo A, Waterman MR, Kamps MP, Kagawa N. Protein kinase A-dependent transactivation by the E2A-Pbx1 fusion protein. J Biol Chem. 1995;270(43):25340–25343.PubMedCrossRefGoogle Scholar
  242. 242.
    Carroll AJ, Crist WM, Parmley RT, Roper M, Cooper MD, Finley WH. Pre-B cell leukemia associated with chromosome translocation 1;19. Blood. 1984;63(3):721–724.PubMedGoogle Scholar
  243. 243.
    Pui CH, Raimondi SC, Hancock ML, et al. Immunologic, cytogenetic, and clinical characterization of childhood acute lymphoblastic leukemia with the t(1;19) (q23; p13) or its derivative. J Clin Oncol. 1994;12(12):2601–2606.PubMedGoogle Scholar
  244. 244.
    Secker-Walker LM, Berger R, Fenaux P, et al. Prognostic significance of the balanced t(1;19) and unbalanced der(19)t(1;19) translocations in acute lymphoblastic leukemia. Leukemia. 1992;6(5):363–369.PubMedGoogle Scholar
  245. 245.
    Gaynon PS, Crotty ML, Sather HN, et al. Expression of BCR-ABL, E2A-PBX1, and MLL-AF4 fusion transcripts in newly diagnosed children with acute lymphoblastic leukemia: a Children’s Cancer Group initiative. Leuk Lymphoma. 1997;26(1–2):57–65.PubMedGoogle Scholar
  246. 246.
    Raimondi SC, Behm FG, Roberson PK, et al. Cytogenetics of pre-B-cell acute lymphoblastic leukemia with emphasis on prognostic implications of the t(1;19). J Clin Oncol. 1990;8(8):1380–1388.PubMedGoogle Scholar
  247. 247.
    Mancini M, Scappaticci D, Cimino G, et al. A comprehensive genetic classification of adult acute lymphoblastic leukemia (ALL): analysis of the GIMEMA 0496 protocol. Blood. 2005;105(9):3434–3441.PubMedCrossRefGoogle Scholar
  248. 248.
    Vey N, Thomas X, Picard C, et al. Allogeneic stem cell transplantation improves the outcome of adults with t(1;19)/E2A-PBX1 and t(4;11)/MLL-AF4 positive B-cell acute lymphoblastic leukemia: results of the prospective multicenter LALA-94 study. Leukemia. 2006;20(12):2155–2161.PubMedCrossRefGoogle Scholar
  249. 249.
    Piccaluga PP, Malagola M, Rondoni M, et al. Poor outcome of adult acute lymphoblastic leukemia patients carrying the (1;19)(q23;p13) translocation. Leuk Lymphoma. 2006;47(3):469–472.PubMedCrossRefGoogle Scholar
  250. 250.
    Khalidi HS, O’Donnell MR, Slovak ML, Arber DA. Adult precursor-B acute lymphoblastic leukemia with translocations involving chromosome band 19p13 is associated with poor prognosis. Cancer Genet Cytogenet. 1999;109(1):58–65.PubMedCrossRefGoogle Scholar
  251. 251.
    Kowalczyk J, Sandberg AA. A possible subgroup of ALL with 9p-. Cancer Genet Cytogenet. 1983;9(4):383–385.PubMedCrossRefGoogle Scholar
  252. 252.
    Translocations involving 9p and/or 12p in acute lymphoblastic leukemia. United Kingdom Cancer Cytogenetics Group (UKCCG). Genes Chromosomes Cancer. 1992;5(3):255–259.Google Scholar
  253. 253.
    Takeuchi S, Koike M, Seriu T, et al. Homozygous deletions at 9p21 in childhood acute lymphoblastic leukemia detected by microsatellite analysis. Leukemia. 1997;11(10):1636–1640.PubMedCrossRefGoogle Scholar
  254. 254.
    Bargetzi MJ, Muhlematter D, Tichelli A, Jotterand M, Wernli M. Dicentric translocation (9;12) presenting as refractory Philadelphia chromosome-positive acute B-cell lymphoblastic leukemia. Cancer Genet Cytogenet. 1999;113(1):90–92.PubMedCrossRefGoogle Scholar
  255. 255.
    Behrendt H, Charrin C, Gibbons B, et al. Dicentric (9;12) in acute lymphocytic leukemia and other hematological malignancies: report from a dic(9;12) study group. Leukemia. 1995;9(1):102–106.PubMedGoogle Scholar
  256. 256.
    Huret JL, Heerema NA, Brizard A, et al. Two additional cases of t dic(9:12) in acute lymphocytic leukemia (ALL): prognosis in ALL with dic(9:12). Leukemia. 1990;4(6):423–425.PubMedGoogle Scholar
  257. 257.
    Stark B, Jeison M, Luria D, et al. Dicentric (9;12) in pre-B acute lymphoblastic leukemia (ALL) in an infant. Leukemia. 1996;10(1):183–184.PubMedGoogle Scholar
  258. 258.
    Mahmoud H, Carroll AJ, Behm F, et al. The non-random dic(9;12) translocation in acute lymphoblastic leukemia is associated with B-progenitor phenotype and an excellent prognosis. Leukemia. 1992;6(7):703–707.PubMedGoogle Scholar
  259. 259.
    Forestier E, Gauffin F, Andersen MK, et al. Clinical and cytogenetic features of pediatric dic(9;20)(p13.2;q11.2)-positive B-cell precursor acute lymphoblastic leukemias: a Nordic series of 24 cases and review of the literature. Genes Chromosomes Cancer. 2008;47(2):149–158.PubMedCrossRefGoogle Scholar
  260. 260.
    Heerema NA, Maben KD, Bernstein J, Breitfeld PP, Neiman RS, Vance GH. Dicentric (9;20)(p11;q11) identified by fluorescence in situ hybridization in four pediatric acute lymphoblastic leukemia patients. Cancer Genet Cytogenet. 1996;92(2):111–115.PubMedCrossRefGoogle Scholar
  261. 261.
    Rieder H, Schnittger S, Bodenstein H, et al. dic(9;20): a new recurrent chromosome abnormality in adult acute lymphoblastic leukemia. Genes Chromosomes Cancer. 1995;13(1):54–61.PubMedCrossRefGoogle Scholar
  262. 262.
    Slater R, Smit E, Kroes W, et al. A non-random chromosome abnormality found in precursor-B lineage acute lymphoblastic leukaemia: dic(9;20)(p1?3;q11). Leukemia. 1995;9(10):1613–1619.PubMedGoogle Scholar
  263. 263.
    Song X, Gong S, Yang J, Wang J. Clinical and molecular cytogenetic characteristics of dic(9;20) in adult acute lymphoblastic leukemia: a case report of three patients. Ann Hematol. 2007;86(5):347–351.PubMedCrossRefGoogle Scholar
  264. 264.
    Diaz MO, Ziemin S, Le Beau MM, et al. Homozygous deletion of the alpha- and beta 1-interferon genes in human leukemia and derived cell lines. Proc Natl Acad Sci USA. 1988;85(14):5259–5263.PubMedCrossRefGoogle Scholar
  265. 265.
    Diaz MO, Rubin CM, Harden A, et al. Deletions of interferon genes in acute lymphoblastic leukemia. N Engl J Med. 1990;322(2):77–82.PubMedCrossRefGoogle Scholar
  266. 266.
    Middleton PG, Prince RA, Williamson IK, et al. Alpha interferon gene deletions in adults, children and infants with acute lymphoblastic leukemia. Leukemia. 1991;5(8):680–682.PubMedGoogle Scholar
  267. 267.
    Dreyling MH, Bohlander SK, Le Beau MM, Olopade OI. Refined mapping of genomic rearrangements involving the short arm of chromosome 9 in acute lymphoblastic leukemias and other hematologic malignancies. Blood. 1995;86(5):1931–1938.PubMedGoogle Scholar
  268. 268.
    Okuda T, Shurtleff SA, Valentine MB, et al. Frequent deletion of p16INK4a/MTS1 and p15INK4b/MTS2 in pediatric acute lymphoblastic leukemia. Blood. 1995;85(9):2321–2330.PubMedGoogle Scholar
  269. 269.
    Okuda T, Hirai H, Valentine VA, et al. Molecular cloning, expression pattern, and chromosomal localization of human CDKN2D/INK4d, an inhibitor of cyclin D-dependent kinases. Genomics. 1995;29(3):623–630.PubMedCrossRefGoogle Scholar
  270. 270.
    Quesnel B, Preudhomme C, Philippe N, et al. p16 gene homozygous deletions in acute lymphoblastic leukemia. Blood. 1995;85(3):657–663.PubMedGoogle Scholar
  271. 271.
    Rasool O, Heyman M, Brandter LB, et al. p15ink4B and p16ink4 gene inactivation in acute lymphocytic leukemia. Blood. 1995;85(12):3431–3436.PubMedGoogle Scholar
  272. 272.
    Schroder M, Mathieu U, Dreyling MH, et al. CDKN2 gene deletion is not found in chronic lymphoid leukaemias of B- and T-cell origin but is frequent in acute lymphoblastic leukaemia. Br J Haematol. 1995;91(4):865–870.PubMedCrossRefGoogle Scholar
  273. 273.
    Strehl S, Konig M, Dworzak MN, Kalwak K, Haas OA. PAX5/ETV6 fusion defines cytogenetic entity dic(9;12)(p13;p13). Leukemia. 2003;17(6):1121–1123.PubMedCrossRefGoogle Scholar
  274. 274.
    Cazzaniga G, Daniotti M, Tosi S, et al. The paired box domain gene PAX5 is fused to ETV6/TEL in an acute lymphoblastic leukemia case. Cancer Res. 2001;61(12):4666–4670.PubMedGoogle Scholar
  275. 275.
    Busslinger M, Klix N, Pfeffer P, Graninger PG, Kozmik Z. Deregulation of PAX-5 by translocation of the Emu enhancer of the IgH locus adjacent to two alternative PAX-5 promoters in a diffuse large-cell lymphoma. Proc Natl Acad Sci USA. 1996;93(12):6129–6134.PubMedCrossRefGoogle Scholar
  276. 276.
    Stapleton P, Weith A, Urbanek P, Kozmik Z, Busslinger M. Chromosomal localization of seven PAX genes and cloning of a novel family member, PAX-9. Nat Genet. 1993;3(4):292–298.PubMedCrossRefGoogle Scholar
  277. 277.
    Busslinger M. Transcriptional control of early B cell development. Annu Rev Immunol. 2004;22:55–79.PubMedCrossRefGoogle Scholar
  278. 278.
    Nutt SL, Heavey B, Rolink AG, Busslinger M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature. 1999;401(6753):556–562.PubMedCrossRefGoogle Scholar
  279. 279.
    Stuart ET, Gruss P. PAX: developmental control genes in cell growth and differentiation. Cell Growth Differ. 1996;7(3):405–412.PubMedGoogle Scholar
  280. 280.
    Gastier-Foster JM, Carroll AJ, Ell D, et al. Two distinct subsets of dic(9;12)(p12;p11.2) among children with B-cell precursor acute lymphoblastic leukemia (ALL): PAX5-ETV6 and ETV6-RUNX1 rearrangements: a report from the Children’s Oncology Group. ASH Annual Meeting Abstracts. 2007;110(11):1439.Google Scholar
  281. 281.
    Calero Moreno TM, Gustafsson G, Garwicz S, et al. Deletion of the Ink4-locus (the p16ink4a, p14ARF and p15ink4b genes) predicts relapse in children with ALL treated according to the Nordic protocols NOPHO-86 and NOPHO-92. Leukemia. 2002;16(10):2037–2045.PubMedCrossRefGoogle Scholar
  282. 282.
    Heyman M, Rasool O, Borgonovo BL, et al. Prognostic importance of p15INK4B and p16INK4 gene inactivation in childhood acute lymphocytic leukemia. J Clin Oncol. 1996;14(5):1512–1520.PubMedGoogle Scholar
  283. 283.
    Heyman M, Grander D, Brondum-Nielsen K, Liu Y, Soderhall S, Einhorn S. Deletions of the short arm of chromosome 9, including the interferon-alpha/-beta genes, in acute lymphocytic leukemia. Studies on loss of heterozygosity, parental origin of deleted genes and prognosis. Int J Cancer. 1993;54(5):748–753.PubMedCrossRefGoogle Scholar
  284. 284.
    Robinson HM, Broadfield ZJ, Cheung KL, et al. Amplification of AML1 in acute lymphoblastic leukemia is associated with a poor outcome. Leukemia. 2003;17(11):2249–2250.PubMedCrossRefGoogle Scholar
  285. 285.
    Niini T, Kanerva J, Vettenranta K, Saarinen-Pihkala UM, Knuutila S. AML1 gene amplification: a novel finding in childhood acute lymphoblastic leukemia. Haematologica. 2000;85(4):362–366.PubMedGoogle Scholar
  286. 286.
    Perez-Vera P, Montero-Ruiz O, Frias S, et al. Multiple copies of RUNX1: description of 14 new patients, follow-up, and a review of the literature. Cancer Genet Cytogenet. 2008;180(2):129–134.PubMedCrossRefGoogle Scholar
  287. 287.
    Robinson HM, Harrison CJ, Moorman AV, Chudoba I, Strefford JC. Intrachromosomal amplification of chromosome 21 (iAMP21) may arise from a breakage-fusion-bridge cycle. Genes Chromosomes Cancer. 2007;46(4):318–326.PubMedCrossRefGoogle Scholar
  288. 288.
    Attarbaschi A, Mann G, Panzer-Grumayer R, et al. Minimal residual disease values discriminate between low and high relapse risk in children with B-cell precursor acute lymphoblastic leukemia and an intrachromosomal amplification of chromosome 21: the Austrian and German acute lymphoblastic leukemia Berlin-Frankfurt-Munster (ALL-BFM) trials. J Clin Oncol. 2008;26(18):3046–3050.PubMedCrossRefGoogle Scholar
  289. 289.
    Moorman AV, Richards SM, Robinson HM, et al. Prognosis of children with acute lymphoblastic leukemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21). Blood. 2007;109(6):2327–2330.PubMedCrossRefGoogle Scholar
  290. 290.
    Moppett J, Burke GA, Steward CG, Oakhill A, Goulden NJ. The clinical relevance of detection of minimal residual disease in childhood acute lymphoblastic leukaemia. J Clin Pathol. 2003;56(4):249–253.PubMedCrossRefGoogle Scholar
  291. 291.
    Coustan-Smith E, Behm FG, Sanchez J, et al. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet. 1998;351(9102):550–554.PubMedCrossRefGoogle Scholar
  292. 292.
    Coustan-Smith E, Sancho J, Hancock ML, et al. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood. 2000;96(8):2691–2696.PubMedGoogle Scholar
  293. 293.
    Coustan-Smith E, Sancho J, Behm FG, et al. Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood. 2002;100(1):52–58.PubMedCrossRefGoogle Scholar
  294. 294.
    Dworzak MN, Froschl G, Printz D, et al. Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood. 2002;99(6):1952–1958.PubMedCrossRefGoogle Scholar
  295. 295.
    Cave H, van der Werff ten Bosch J, Suciu S, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer – Childhood Leukemia Cooperative Group. N Engl J Med. 1998;339(9):591–598.PubMedCrossRefGoogle Scholar
  296. 296.
    Panzer-Grumayer ER, Schneider M, Panzer S, Fasching K, Gadner H. Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood. 2000;95(3):790–794.PubMedGoogle Scholar
  297. 297.
    van Dongen JJ, Seriu T, Panzer-Grumayer ER, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet. 1998;352(9142):1731–1738.PubMedCrossRefGoogle Scholar
  298. 298.
    Borowitz MJ, Devidas M, Hunger SP, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Group study. Blood. 2008;111(12):5477–5485.PubMedCrossRefGoogle Scholar
  299. 299.
    Cimino G, Elia L, Rivolta A, et al. Clinical relevance of residual disease monitoring by polymerase chain reaction in patients with ALL-1/AF-4 positive-acute lymphoblastic leukaemia. Br J Haematol. 1996;92(3):659–664.PubMedCrossRefGoogle Scholar
  300. 300.
    Janssen JW, Ludwig WD, Borkhardt A, et al. Pre-pre-B acute lymphoblastic leukemia: high frequency of alternatively spliced ALL1-AF4 transcripts and absence of minimal residual disease during complete remission. Blood. 1994;84(11):3835–3842.PubMedGoogle Scholar
  301. 301.
    Mitterbauer G, Zimmer C, Fonatsch C, et al. Monitoring of minimal residual leukemia in patients with MLL-AF9 positive acute myeloid leukemia by RT-PCR. Leukemia. 1999;13(10):1519–1524.PubMedCrossRefGoogle Scholar
  302. 302.
    Reichel M, Gillert E, Breitenlohner I, et al. Rapid isolation of chromosomal breakpoints from patients with t(4;11) acute lymphoblastic leukemia: implications for basic and clinical research. Cancer Res. 1999;59(14):3357–3362.PubMedGoogle Scholar
  303. 303.
    Gehly GB, Bryant EM, Lee AM, Kidd PG, Thomas ED. Chimeric BCR-abl messenger RNA as a marker for minimal residual disease in patients transplanted for Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 1991;78(2):458–465.PubMedGoogle Scholar
  304. 304.
    Mitterbauer G, Nemeth P, Wacha S, et al. Quantification of minimal residual disease in patients with BCR-ABL-positive acute lymphoblastic leukaemia using quantitative competitive polymerase chain reaction. Br J Haematol. 1999;106(3):634–643.PubMedCrossRefGoogle Scholar
  305. 305.
    Miyamura K, Tanimoto M, Morishima Y, et al. Detection of Philadelphia chromosome-positive acute lymphoblastic leukemia by polymerase chain reaction: possible eradication of minimal residual disease by marrow transplantation. Blood. 1992;79(5):1366–1370.PubMedGoogle Scholar
  306. 306.
    Radich J, Gehly G, Lee A, et al. Detection of bcr-abl transcripts in Philadelphia chromosome-positive acute lymphoblastic leukemia after marrow transplantation. Blood. 1997;89(7):2602–2609.PubMedGoogle Scholar
  307. 307.
    Cayuela JM, Baruchel A, Orange C, et al. TEL-AML1 fusion RNA as a new target to detect minimal residual disease in pediatric B-cell precursor acute lymphoblastic leukemia. Blood. 1996;88(1):302–308.PubMedGoogle Scholar
  308. 308.
    de Haas V, Oosten L, Dee R, et al. Minimal residual disease studies are beneficial in the follow-up of TEL/AML1 patients with B-precursor acute lymphoblastic leukaemia. Br J Haematol. 2000;111(4):1080–1086.PubMedCrossRefGoogle Scholar
  309. 309.
    Fasching K, Konig M, Hettinger K, et al. MRD levels during the first months of treatment indicate relapses in children with t(12;21)-positive ALL. Leukemia. 2000;14(9):1707–1708.PubMedCrossRefGoogle Scholar
  310. 310.
    Pallisgaard N, Clausen N, Schroder H, Hokland P. Rapid and sensitive minimal residual disease detection in acute leukemia by quantitative real-time RT-PCR exemplified by t(12;21) TEL-AML1 fusion transcript. Genes Chromosomes Cancer. 1999;26(4):355–365.PubMedCrossRefGoogle Scholar
  311. 311.
    Park HJ, Lee KE, Um JM, et al. Molecular detection of TEL-AML1 transcripts as a diagnostic tool and for monitoring of minimal residual disease in B-lineage childhood acute lymphoblastic leukemia. Mol Cells. 2000;10(1):90–95.PubMedCrossRefGoogle Scholar
  312. 312.
    Pine SR, Moy FH, Wiemels JL, et al. Real-time quantitative PCR: standardized detection of minimal residual disease in pediatric acute lymphoblastic leukemia. Polymerase chain reaction. J Pediatr Hematol Oncol. 2003;25(2):103–108.PubMedCrossRefGoogle Scholar
  313. 313.
    Taube T, Eckert C, Korner G, Henze G, Seeger K. Real-time quantification of TEL-AML1 fusion transcripts for MRD detection in relapsed childhood acute lymphoblastic leukaemia. Comparison with antigen receptor-based MRD quantification methods. Leuk Res. 2004;28(7):699–706.PubMedCrossRefGoogle Scholar
  314. 314.
    Devaraj PE, Foroni L, Janossy G, Hoffbrand AV, Secker-Walker LM. Expression of the E2A-PBX1 fusion transcripts in t(1;19)(q23;p13) and der(19)t(1;19) at diagnosis and in remission of acute lymphoblastic leukemia with different B lineage immunophenotypes. Leukemia. 1995;9(5):821–825.PubMedGoogle Scholar
  315. 315.
    Foa R, Vitale A, Mancini M, et al. E2A-PBX1 fusion in adult acute lymphoblastic leukaemia: biological and clinical features. Br J Haematol. 2003;120(3):484–487.PubMedCrossRefGoogle Scholar
  316. 316.
    Hunger SP, Fall MZ, Camitta BM, et al. E2A-PBX1 chimeric transcript status at end of consolidation is not predictive of treatment outcome in childhood acute lymphoblastic leukemias with a t(1;19)(q23;p13): a Pediatric Oncology Group study. Blood. 1998;91(3):1021–1028.PubMedGoogle Scholar
  317. 317.
    Izraeli S, Henn T, Strobl H, et al. Expression of identical E2A/PBX1 fusion transcripts occurs in both pre-B and early pre-B immunological subtypes of childhood acute lymphoblastic leukemia. Leukemia. 1993;7(12):2054–2056.PubMedGoogle Scholar
  318. 318.
    Lanza C, Gottardi E, Gaidano G, et al. Persistence of E2A/PBX1 transcripts in t(1;19) childhood acute lymphoblastic leukemia: correlation with chemotherapy intensity and clinical outcome. Leuk Res. 1996;20(5):441–443.PubMedCrossRefGoogle Scholar
  319. 319.
    Privitera E, Rivolta A, Ronchetti D, Mosna G, Giudici G, Biondi A. Reverse transcriptase/polymerase chain reaction follow-up and minimal residual disease detection in t(1;19)-positive acute lymphoblastic leukaemia. Br J Haematol. 1996;92(3):653–658.PubMedCrossRefGoogle Scholar
  320. 320.
    van Dongen JJ, Macintyre EA, Gabert JA, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13(12):1901–1928.PubMedCrossRefGoogle Scholar
  321. 321.
    Cazzaniga G, Lanciotti M, Rossi V, et al. Prospective molecular monitoring of BCR/ABL transcript in children with Ph+ acute lymphoblastic leukaemia unravels differences in treatment response. Br J Haematol. 2002;119(2):445–453.PubMedCrossRefGoogle Scholar
  322. 322.
    Dombret H, Gabert J, Boiron JM, et al. Outcome of treatment in adults with Philadelphia chromosome-positive acute lymphoblastic leukemia – results of the prospective multicenter LALA-94 trial. Blood. 2002;100(7):2357–2366.PubMedCrossRefGoogle Scholar
  323. 323.
    Pane F, Frigeri F, Sindona M, et al. Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood. 1996;88(7):2410–2414.PubMedGoogle Scholar
  324. 324.
    Scheuring UJ, Pfeifer H, Wassmann B, et al. Serial minimal residual disease (MRD) analysis as a predictor of response duration in Philadelphia-positive acute lymphoblastic leukemia (Ph + ALL) during imatinib treatment. Leukemia. 2003;17(9):1700–1706.PubMedCrossRefGoogle Scholar
  325. 325.
    Stirewalt DL, Guthrie KA, Beppu L, et al. Predictors of relapse and overall survival in Philadelphia chromosome-positive acute lymphoblastic leukemia after transplantation. Biol Blood Marrow Transplant. 2003;9(3):206–212.PubMedCrossRefGoogle Scholar
  326. 326.
    Endo C, Oda M, Nishiuchi R, Seino Y. Persistence of TEL-AML1 transcript in acute lymphoblastic leukemia in long-term remission. Pediatr Int. 2003;45(3):275–280.PubMedCrossRefGoogle Scholar
  327. 327.
    Madzo J, Zuna J, Muzikova K, et al. Slower molecular response to treatment predicts poor outcome in patients with TEL/AML1 positive acute lymphoblastic leukemia: prospective real-time quantitative reverse transcriptase-polymerase chain reaction study. Cancer. 2003;97(1):105–113.PubMedCrossRefGoogle Scholar
  328. 328.
    Metzler M, Mann G, Monschein U, et al. Minimal residual disease analysis in children with t(12;21)-positive acute lymphoblastic leukemia: comparison of Ig/TCR rearrangements and the genomic fusion gene. Haematologica. 2006;91(5):683–686.PubMedGoogle Scholar
  329. 329.
    Lin P, Jones D, Dorfman DM, Medeiros LJ. Precursor B-cell lymphoblastic lymphoma: a predominantly extranodal tumor with low propensity for leukemic involvement. Am J Surg Pathol. 2000;24(11):1480–1490.PubMedCrossRefGoogle Scholar
  330. 330.
    Lones MA, Heerema NA, Le Beau MM, et al. Chromosome abnormalities in advanced stage lymphoblastic lymphoma of children and adolescents: a report from CCG-E08. Cancer Genet Cytogenet. 2007;172(1):1–11.PubMedCrossRefGoogle Scholar
  331. 331.
    Maitra A, McKenna RW, Weinberg AG, Schneider NR, Kroft SH. Precursor B-cell lymphoblastic lymphoma. A study of nine cases lacking blood and bone marrow involvement and review of the literature. Am J Clin Pathol. 2001;115(6):868–875.PubMedCrossRefGoogle Scholar
  332. 332.
    Head DR, Behm FG. Acute lymphoblastic leukemia and the lymphoblastic lymphomas of childhood. Semin Diagn Pathol. 1995;12(4):325–334.PubMedGoogle Scholar
  333. 333.
    Belgaumi AF, Al-Kofide A, Sabbah R, Shalaby L. Precursor B-cell lymphoblastic lymphoma (PBLL) in children: pattern of presentation and outcome. J Egypt Natl Canc Inst. 2005;17(1):15–19.PubMedGoogle Scholar
  334. 334.
    Shikano T, Ishikawa Y, Naito H, et al. Cytogenetic characteristics of childhood non-Hodgkin lymphoma. Cancer. 1992;70(3):714–719.PubMedCrossRefGoogle Scholar
  335. 335.
    Yeoh EJ, Ross ME, Shurtleff SA, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell. 2002;1(2):133–143.PubMedCrossRefGoogle Scholar
  336. 336.
    Armstrong SA, Staunton JE, Silverman LB, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet. 2002;30(1):41–47.PubMedCrossRefGoogle Scholar
  337. 337.
    Gandemer V, Rio AG, de Tayrac M, et al. Five distinct biological processes and 14 differentially expressed genes characterize TEL/AML1-positive leukemia. BMC Genomics. 2007;8:385.PubMedCrossRefGoogle Scholar
  338. 338.
    Bhojwani D, Kang H, Moskowitz NP, et al. Biologic pathways associated with relapse in childhood acute lymphoblastic leukemia: a Children’s Oncology Group study. Blood. 2006;108(2):711–717.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Julie M. Gastier-Foster
    • 1
    • 2
  1. 1.Cytogenetics/Molecular Genetics Laboratory, Department of Laboratory MedicineNationwide Children’s HospitalColumbusUSA
  2. 2.Department of PathologyOhio State UniversityColumbusUSA

Personalised recommendations