Mantle Cell Lymphoma

  • Kai Fu
  • Qinglong Hu
Part of the Molecular Pathology Library book series (MPLB, volume 4)


Mantle cell lymphoma (MCL) is a distinct subtype of mature B-cell neoplasm with characteristic histologic, immunophenotypic, genetic, and clinical features. The neoplastic cells of MCL appear to correspond to naïve B cells that normally home to, and reside in, primary lymphoid follicles and mantle zones of the secondary follicles. MCL brings together the worst characteristics of high-grade and low-grade lymphomas; the course of the disease is not indolent, and the disease is rarely curable. Novel and better therapies are definitely needed for this group of lymphomas.


Mantle Cell Lymphoma Mantle Zone Mantle Cell Lymphoma Cell Mantle Cell Lymphoma Patient Mantle Cell Lymphoma Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jaffe ES, Harris NL, Stein H, Vardiman J. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. 1st ed. Lyon: IARC; 2001.Google Scholar
  2. 2.
    Anderson JR, Armitage JO, Weisenburger DD. Epidemiology of the non-Hodgkin’s lymphomas: distributions of the major subtypes differ by geographic locations. Non-Hodgkin’s Lymphoma Classification Project. Ann Oncol. 1998;9:717–720.PubMedCrossRefGoogle Scholar
  3. 3.
    A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. The Non-Hodgkin’s Lymphoma Classification Project. Blood. 1997;89:3909–3918.Google Scholar
  4. 4.
    Argatoff LH, Connors JM, Klasa RJ, Horsman DE, Gascoyne RD. Mantle cell lymphoma: a clinicopathologic study of 80 cases. Blood. 1997;89:2067–2078.PubMedGoogle Scholar
  5. 5.
    Bosch F, Lopez-Guillermo A, Campo E, et al. Mantle cell lymphoma: presenting features, response to therapy, and prognostic factors. Cancer. 1998;82:567–575.PubMedCrossRefGoogle Scholar
  6. 6.
    Zhou Y, Wang H, Fang W, et al. Incidence trends of mantle cell lymphoma in the United States between 1992 and 2004. Cancer. 2008;113:791–798.PubMedCrossRefGoogle Scholar
  7. 7.
    Weisenburger DD, Armitage JO. Mantle cell lymphoma – an entity comes of age. Blood. 1996;87:4483–4494.PubMedGoogle Scholar
  8. 8.
    Moynihan MJ, Bast MA, Chan WC, et al. Lymphomatous polyposis. A neoplasm of either follicular mantle or germinal center cell origin. Am J Surg Pathol. 1996;20:442–452.PubMedCrossRefGoogle Scholar
  9. 9.
    Banks PM, Chan J, Cleary ML, et al. Mantle cell lymphoma. A proposal for unification of morphologic, immunologic, and molecular data. Am J Surg Pathol. 1992;16:637–640.PubMedCrossRefGoogle Scholar
  10. 10.
    Lardelli P, Bookman MA, Sundeen J, Longo DL, Jaffe ES. Lymphocytic lymphoma of intermediate differentiation. Morphologic and immunophenotypic spectrum and clinical correlations. Am J Surg Pathol. 1990;14:752–763.PubMedCrossRefGoogle Scholar
  11. 11.
    Weisenburger DD, Kim H, Rappaport H. Mantle-zone lymphoma: a follicular variant of intermediate lymphocytic lymphoma. Cancer. 1982;49:1429–1438.PubMedCrossRefGoogle Scholar
  12. 12.
    Richard P, Vassallo J, Valmary S, Missoury R, Delsol G, Brousset P. “In situ-like” mantle cell lymphoma: a report of two cases. J Clin Pathol. 2006;59:995–996.PubMedCrossRefGoogle Scholar
  13. 13.
    Norton AJ, Matthews J, Pappa V, et al. Mantle cell lymphoma: natural history defined in a serially biopsied population over a 20–year period. Ann Oncol. 1995;6:249–256.PubMedGoogle Scholar
  14. 14.
    Cheuk W, Wong KO, Wong CS, Chan JK. Consistent immunostaining for cyclin D1 can be achieved on a routine basis using a newly available rabbit monoclonal antibody. Am J Surg Pathol. 2004;28:801–807.PubMedCrossRefGoogle Scholar
  15. 15.
    Pruneri G, Valentini S, Bertolini F, Del Curto B, Maiorano E, Viale G. SP4, a novel anti-cyclin D1 rabbit monoclonal antibody, is a highly sensitive probe for identifying mantle cell lymphomas bearing the t(11;14)(q13;q32) translocation. Appl Immunohistochem Mol Morphol. 2005;13:318–322.PubMedCrossRefGoogle Scholar
  16. 16.
    Chuang SS, Huang WT, Hsieh PP, et al. Mantle cell lymphoma in Taiwan: clinicopathological and molecular study of 21 cases including one cyclin D1-negative tumor expressing cyclin D2. Pathol Int. 2006;56:440–448.PubMedCrossRefGoogle Scholar
  17. 17.
    Fu K, Weisenburger DD, Greiner TC, et al. Cyclin D1-negative mantle cell lymphoma: a clinicopathologic study based on gene expression profiling. Blood. 2005;106:4315–4321.PubMedCrossRefGoogle Scholar
  18. 18.
    Williams ME, Meeker TC, Swerdlow SH. Rearrangement of the chromosome 11 bcl-1 locus in centrocytic lymphoma: analysis with multiple breakpoint probes. Blood. 1991;78:493–498.PubMedGoogle Scholar
  19. 19.
    Tsujimoto Y, Yunis J, Onorato-Showe L, Erikson J, Nowell PC, Croce CM. Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science. 1984;224:1403–1406.PubMedCrossRefGoogle Scholar
  20. 20.
    Remstein ED, Kurtin PJ, Buno I, et al. Diagnostic utility of fluorescence in situ hybridization in mantle-cell lymphoma. Br J Haematol. 2000;110:856–862.PubMedCrossRefGoogle Scholar
  21. 21.
    Medeiros LJ, Carr J. Overview of the role of molecular methods in the diagnosis of malignant lymphomas. Arch Pathol Lab Med. 1999;123:1189–1207.PubMedGoogle Scholar
  22. 22.
    Belaud-Rotureau MA, Parrens M, Dubus P, Garroste JC, de Mascarel A, Merlio JP. A comparative analysis of FISH, RT-PCR, PCR, and immunohistochemistry for the diagnosis of mantle cell lymphomas. Mod Pathol. 2002;15:517–525.PubMedCrossRefGoogle Scholar
  23. 23.
    Medeiros LJ, Van Krieken JH, Jaffe ES, Raffeld M. Association of bcl-1 rearrangements with lymphocytic lymphoma of intermediate differentiation. Blood. 1990;76:2086–2090.PubMedGoogle Scholar
  24. 24.
    Arnold A, Kim HG, Gaz RD, et al. Molecular cloning and chromosomal mapping of DNA rearranged with the parathyroid hormone gene in a parathyroid adenoma. J Clin Invest. 1989;83:2034–2040.PubMedCrossRefGoogle Scholar
  25. 25.
    Lukas J, Jadayel D, Bartkova J, et al. BCL-1/cyclin D1 oncoprotein oscillates and subverts the G1 phase control in B-cell neoplasms carrying the t(11;14) translocation. Oncogene. 1994;9:2159–2167.PubMedGoogle Scholar
  26. 26.
    Arnold A. The cyclin D1/PRAD1 oncogene in human neoplasia. J Investig Med. 1995;43:543–549.PubMedGoogle Scholar
  27. 27.
    Sherr CJ. Cancer cell cycles. Science. 1996;274:1672–1677.PubMedCrossRefGoogle Scholar
  28. 28.
    Pinyol M, Bea S, Pla L, et al. Inactivation of RB1 in mantle-cell lymphoma detected by nonsense-mediated mRNA decay pathway inhibition and microarray analysis. Blood. 2007;109:5422–5429.PubMedCrossRefGoogle Scholar
  29. 29.
    Wlodarska I, Dierickx D, Vanhentenrijk V, et al. Translocations targeting CCND2, CCND3, and MYCN do occur in t(11;14)-negative mantle cell lymphomas. Blood. 2008;111:5683–5690.PubMedCrossRefGoogle Scholar
  30. 30.
    Gesk S, Klapper W, Martin-Subero JI, et al. A chromosomal translocation in cyclin D1-negative/cyclin D2-positive mantle cell lymphoma fuses the CCND2 gene to the IGK locus. Blood. 2006;108:1109–1110.PubMedCrossRefGoogle Scholar
  31. 31.
    Herens C, Lambert F, Quintanilla-Martinez L, Bisig B, Deusings C, de Leval L. Cyclin D1-negative mantle cell lymphoma with cryptic t(12;14)(p13;q32) and cyclin D2 overexpression. Blood. 2008;111:1745–1746.PubMedCrossRefGoogle Scholar
  32. 32.
    Salaverria I, Zettl A, Bea S, et al. Specific secondary genetic alterations in mantle cell lymphoma provide prognostic information independent of the gene expression-based proliferation signature. J Clin Oncol. 2007;25:1216–1222.PubMedCrossRefGoogle Scholar
  33. 33.
    Bodrug SE, Warner BJ, Bath ML, Lindeman GJ, Harris AW, Adams JM. Cyclin D1 transgene impedes lymphocyte maturation and collaborates in lymphomagenesis with the myc gene. EMBO J. 1994;13:2124–2130.PubMedGoogle Scholar
  34. 34.
    Lovec H, Grzeschiczek A, Kowalski MB, Moroy T. Cyclin D1/bcl-1 cooperates with myc genes in the generation of B-cell lymphoma in transgenic mice. EMBO J. 1994;13:3487–3495.PubMedGoogle Scholar
  35. 35.
    Lovec H, Sewing A, Lucibello FC, Muller R, Moroy T. Oncogenic activity of cyclin D1 revealed through cooperation with Ha-ras: link between cell cycle control and malignant transformation. Oncogene. 1994;9:323–326.PubMedGoogle Scholar
  36. 36.
    Allen JE, Hough RE, Goepel JR, et al. Identification of novel regions of amplification and deletion within mantle cell lymphoma DNA by comparative genomic hybridization. Br J Haematol. 2002;116:291–298.PubMedCrossRefGoogle Scholar
  37. 37.
    Martinez-Climent JA, Vizcarra E, Sanchez D, et al. Loss of a novel tumor suppressor gene locus at chromosome 8p is associated with leukemic mantle cell lymphoma. Blood. 2001;98:3479–3482.PubMedCrossRefGoogle Scholar
  38. 38.
    Kohlhammer H, Schwaenen C, Wessendorf S, et al. Genomic DNA-chip hybridization in t(11;14)-positive mantle cell lymphomas shows a high frequency of aberrations and allows a refined characterization of consensus regions. Blood. 2004;104:795–801.PubMedCrossRefGoogle Scholar
  39. 39.
    Bejjani BA, Shaffer LG. Clinical utility of contemporary molecular cytogenetics. Annu Rev Genomics Hum Genet. 2008;9:71–86.PubMedCrossRefGoogle Scholar
  40. 40.
    Schraders M, Pfundt R, Straatman HM, et al. Novel chromosomal imbalances in mantle cell lymphoma detected by genome-wide array-based comparative genomic hybridization. Blood. 2005;105:1686–1693.PubMedCrossRefGoogle Scholar
  41. 41.
    Schraders M, Jares P, Bea S, et al. Integrated genomic and expression profiling in mantle cell lymphoma: identification of gene-dosage regulated candidate genes. Br J Haematol. 2008;143(2):210–221.PubMedCrossRefGoogle Scholar
  42. 42.
    Flordal Thelander E, Ichimura K, Collins VP, et al. Detailed assessment of copy number alterations revealing homozygous deletions in 1p and 13q in mantle cell lymphoma. Leuk Res. 2007;31:1219–1230.PubMedCrossRefGoogle Scholar
  43. 43.
    Rubio-Moscardo F, Climent J, Siebert R, et al. Mantle-cell lymphoma genotypes identified with CGH to BAC microarrays define a leukemic subgroup of disease and predict patient outcome. Blood. 2005;105:4445–4454.PubMedCrossRefGoogle Scholar
  44. 44.
    Sara E, Borrebaeck CA. Parallel gene expression profiling of mantle cell lymphoma – how do we transform ‘omics data into clinical practice. Curr Genomics. 2007;8:171–179.PubMedCrossRefGoogle Scholar
  45. 45.
    Rosenwald A, Wright G, Wiestner A, et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell. 2003;3:185–197.PubMedCrossRefGoogle Scholar
  46. 46.
    Pinyol M, Hernandez L, Cazorla M, et al. Deletions and loss of expression of p16INK4a and p21Waf1 genes are associated with aggressive variants of mantle cell lymphomas. Blood. 1997;89:272–280.PubMedGoogle Scholar
  47. 47.
    Dreyling MH, Bullinger L, Ott G, et al. Alterations of the cyclin D1/p16-pRB pathway in mantle cell lymphoma. Cancer Res. 1997;57:4608–4614.PubMedGoogle Scholar
  48. 48.
    Hernandez L, Bea S, Pinyol M, et al. CDK4 and MDM2 gene alterations mainly occur in highly proliferative and aggressive mantle cell lymphomas with wild-type INK4a/ARF locus. Cancer Res. 2005;65:2199–2206.PubMedCrossRefGoogle Scholar
  49. 49.
    Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A, van Lohuizen M. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 1999;13:2678-2690.PubMedCrossRefGoogle Scholar
  50. 50.
    Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature. 1999;397:164–168.PubMedCrossRefGoogle Scholar
  51. 51.
    Bea S, Ribas M, Hernandez JM, et al. Increased number of chromosomal imbalances and high-level DNA amplifications in mantle cell lymphoma are associated with blastoid variants. Blood. 1999;93:4365–4374.PubMedGoogle Scholar
  52. 52.
    Jares P, Colomer D, Campo E. Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer. 2007;7:750–762.PubMedCrossRefGoogle Scholar
  53. 53.
    Greiner TC, Dasgupta C, Ho VV, et al. Mutation and genomic deletion status of ataxia telangiectasia mutated (ATM) and p53 confer specific gene expression profiles in mantle cell lymphoma. Proc Natl Acad Sci USA. 2006;103:2352–2357.PubMedCrossRefGoogle Scholar
  54. 54.
    Schaffner C, Idler I, Stilgenbauer S, Dohner H, Lichter P. Mantle cell lymphoma is characterized by inactivation of the ATM gene. Proc Natl Acad Sci USA. 2000;97:2773–2778.PubMedCrossRefGoogle Scholar
  55. 55.
    Hartmann E, Fernandez V, Stoecklein H, Hernandez L, Campo E, Rosenwald A. Increased MDM2 expression is associated with inferior survival in mantle-cell lymphoma, but not related to the MDM2 SNP309. Haematologica. 2007;92:574–575.PubMedCrossRefGoogle Scholar
  56. 56.
    Stilgenbauer S, Schaffner C, Winkler D, et al. The ATM gene in the pathogenesis of mantle-cell lymphoma. Ann Oncol. 2000;11(Suppl 1):127–130.PubMedCrossRefGoogle Scholar
  57. 57.
    Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer. 2003;3:155–168.PubMedCrossRefGoogle Scholar
  58. 58.
    Fang NY, Greiner TC, Weisenburger DD, et al. Oligonucleotide microarrays demonstrate the highest frequency of ATM mutations in the mantle cell subtype of lymphoma. Proc Natl Acad Sci USA. 2003;100:5372–5377.PubMedCrossRefGoogle Scholar
  59. 59.
    Camacho E, Hernandez L, Hernandez S, et al. ATM gene inactivation in mantle cell lymphoma mainly occurs by truncating mutations and missense mutations involving the phosphatidylinositol-3 kinase domain and is associated with increasing numbers of chromosomal imbalances. Blood. 2002;99:238–244.PubMedCrossRefGoogle Scholar
  60. 60.
    Rizzatti EG, Falcao RP, Panepucci RA, et al. Gene expression profiling of mantle cell lymphoma cells reveals aberrant expression of genes from the PI3K-AKT, WNT and TGFbeta signalling pathways. Br J Haematol. 2005;130:516–526.PubMedCrossRefGoogle Scholar
  61. 61.
    Ghobrial IM, McCormick DJ, Kaufmann SH, et al. Proteomic analysis of mantle-cell lymphoma by protein microarray. Blood. 2005;105:3722–3730.PubMedCrossRefGoogle Scholar
  62. 62.
    Rudelius M, Pittaluga S, Nishizuka S, et al. Constitutive activation of Akt contributes to the pathogenesis and survival of mantle cell lymphoma. Blood. 2006;108:1668–1676.PubMedCrossRefGoogle Scholar
  63. 63.
    Rao E, McKeithan T, Jiang C, et al. The mir17-92 cluster enhances cell growth and resistance to chemotherapy in mantle cell lymphoma by down-regulating PTEN, PHLPP2 and BIM. American Society of Hematology Fiftieth Annual Meeting. San Francisco, CA: Blood; 2008:145.Google Scholar
  64. 64.
    O’Connor L, Strasser A, O’Reilly LA, et al. Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J. 1998;17:384–395.PubMedCrossRefGoogle Scholar
  65. 65.
    Friedberg JW, Cohen P, Chen L, et al. Bendamustine in patients with rituximab-refractory indolent and transformed non-Hodgkin’s lymphoma: results from a phase II multicenter, single-agent study. J Clin Oncol. 2008;26:204–210.PubMedCrossRefGoogle Scholar
  66. 66.
    Willis SN, Fletcher JI, Kaufmann T, et al. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science. 2007;315:856–859.PubMedCrossRefGoogle Scholar
  67. 67.
    Egle A, Harris AW, Bouillet P, Cory S. Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc Natl Acad Sci USA. 2004;101:6164–6169.PubMedCrossRefGoogle Scholar
  68. 68.
    Tagawa H, Karnan S, Suzuki R, et al. Genome-wide array-based CGH for mantle cell lymphoma: identification of homozygous deletions of the proapoptotic gene BIM. Oncogene. 2005;24:1348–1358.PubMedCrossRefGoogle Scholar
  69. 69.
    Mestre-Escorihuela C, Rubio-Moscardo F, Richter JA, et al. Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas. Blood. 2007;109:271–280.PubMedCrossRefGoogle Scholar
  70. 70.
    Wlodarska I, Pittaluga S, Hagemeijer A, De Wolf-Peeters C, Van Den Berghe H. Secondary chromosome changes in mantle cell lymphoma. Haematologica. 1999;84:594–599.PubMedGoogle Scholar
  71. 71.
    Bea S, Salaverria I, Armengol L, et al. Uniparental disomies, homozygous deletions, amplifications and target genes in mantle cell lymphoma revealed by integrative high-resolution whole genome profiling. Blood. 2008;113(13):3059–3069.PubMedCrossRefGoogle Scholar
  72. 72.
    He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435:828–833.PubMedCrossRefGoogle Scholar
  73. 73.
    Ota A, Tagawa H, Karnan S, et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 2004;64:3087–3095.PubMedCrossRefGoogle Scholar
  74. 74.
    Hayashita Y, Osada H, Tatematsu Y, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 2005;65:9628–9632.PubMedCrossRefGoogle Scholar
  75. 75.
    Langerak AW, Molina TJ, Lavender FL, et al. Polymerase chain reaction-based clonality testing in tissue samples with reactive lymphoproliferations: usefulness and pitfalls. A report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2007;21:222–229.PubMedCrossRefGoogle Scholar
  76. 76.
    Evans PA, Pott C, Groenen PJ, et al. Significantly improved PCR-based clonality testing in B-cell malignancies by use of multiple immunoglobulin gene targets. Report of the BIOMED-2 Concerted Action BHM4-CT98-3936. Leukemia. 2007;21:207–214.PubMedCrossRefGoogle Scholar
  77. 77.
    He QY, Chiu JF. Proteomics in biomarker discovery and drug development. J Cell Biochem. 2003;89:868–886.PubMedCrossRefGoogle Scholar
  78. 78.
    Zhu H, Snyder M. Protein chip technology. Curr Opin Chem Biol. 2003;7:55–63.PubMedCrossRefGoogle Scholar
  79. 79.
    Weinkauf M, Christopeit M, Hiddemann W, Dreyling M. Proteome- and microarray-based expression analysis of lymphoma cell lines identifies a p53-centered cluster of differentially expressed proteins in mantle cell and follicular lymphoma. Electrophoresis. 2007;28:4416–4426.PubMedCrossRefGoogle Scholar
  80. 80.
    Ek S, Andreasson U, Hober S, et al. From gene expression analysis to tissue microarrays: a rational approach to identify therapeutic and diagnostic targets in lymphoid malignancies. Mol Cell Proteomics. 2006;5:1072–1081.PubMedCrossRefGoogle Scholar
  81. 81.
    Raty R, Franssila K, Joensuu H, Teerenhovi L, Elonen E. Ki-67 expression level, histological subtype, and the International Prognostic Index as outcome predictors in mantle cell lymphoma. Eur J Haematol. 2002;69:11–20.PubMedCrossRefGoogle Scholar
  82. 82.
    Tiemann M, Schrader C, Klapper W, et al. Histopathology, cell proliferation indices and clinical outcome in 304 patients with mantle cell lymphoma (MCL): a clinicopathological study from the European MCL Network. Br J Haematol. 2005;131:29–38.PubMedCrossRefGoogle Scholar
  83. 83.
    Katzenberger T, Petzoldt C, Holler S, et al. The Ki67 proliferation index is a quantitative indicator of clinical risk in mantle cell lymphoma. Blood. 2006;107:3407.PubMedCrossRefGoogle Scholar
  84. 84.
    Swerdlow S, Campo E, Seto M, Muller-Hermelinl HK. Mantle cell lymphoma. In: Swerdlow S, Campo E, Harris NL, et al., eds. WHO Classification of Tumors of Haematopoietic and Lymphoid Tissues. Lyon: IARC; 2008:229–232.Google Scholar
  85. 85.
    de Jong D, Rosenwald A, Chhanabhai M, et al. Immunohistochemical prognostic markers in diffuse large B-cell lymphoma: validation of tissue microarray as a prerequisite for broad clinical applications – a study from the Lunenburg Lymphoma Biomarker Consortium. J Clin Oncol. 2007;25:805–812.PubMedCrossRefGoogle Scholar
  86. 86.
    Hartmann E, Fernandez V, Moreno V, et al. Five-gene model to predict survival in mantle-cell lymphoma using frozen or formalin-fixed, paraffin-embedded tissue. J Clin Oncol. 2008;26:4966–4972.PubMedCrossRefGoogle Scholar
  87. 87.
    Williams ME, Densmore JJ. Biology and therapy of mantle cell lymphoma. Curr Opin Oncol. 2005;17:425–431.PubMedCrossRefGoogle Scholar
  88. 88.
    Smith MR. Mantle cell lymphoma: advances in biology and therapy. Curr Opin Hematol. 2008;15:415–421.PubMedCrossRefGoogle Scholar
  89. 89.
    Dreyling M, Weigert O, Hiddemann W. Current treatment standards and future strategies in mantle cell lymphoma. Ann Oncol. 2008;19 Suppl 4:iv41-iv44.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kai Fu
    • 1
  • Qinglong Hu
    • 1
  1. 1.Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations