Advertisement

Lymphoplasmacytic Lymphoma

Chapter
Part of the Molecular Pathology Library book series (MPLB, volume 4)

Abstract

Lymphoplasmacytic lymphoma (LPL), by definition, is a low-grade B cell lymphoma, which displays variable degrees of plasmacytic differentiation and is associated with a serum monoclonal protein, usually of IgM type, but may occasionally be of IgA or IgG type. The term LPL has been used interchangeably with Waldenstrom macroglobulinemia (WM), and yet a variety of low-grade B cell lymphomas, such as small lymphocytic lymphoma/chronic lymphocytic leukemia (CLL) and marginal zone B cell lymphoma (MZL), may also present with IgM macroglobulinemia. The current recommendation is that when the term WM is used clinically to designate a disease entity, it should be applied exclusively to patients with an underlying LPL.

Keywords

Malt Lymphoma Isotype Switching Classical Hodgkin Lymphoma Plasmacytic Differentiation Lymphoplasmacytic Lymphoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Owen RG. Developing diagnostic criteria in Waldenstrom’s macroglobulinemia. Semin Oncol. 2003;30:196–200.PubMedCrossRefGoogle Scholar
  2. 2.
    Waldenstrom J. Incipient myelomatosis or “essential” hyperglobulinemia with fibrinognenopenia: a new syndrome? Acta Med Scand. 1944;117:216–247.CrossRefGoogle Scholar
  3. 3.
    Lin P, Hao S, Handy BC, Bueso-Ramos CE, Medeiros LJ. Lymphoid neoplasms associated with IgM paraprotein: a study of 382 patients. Am J Clin Pathol. 2005;123:200–205.PubMedCrossRefGoogle Scholar
  4. 4.
    A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. The Non-Hodgkin’s Lymphoma Classification Project, Blood. 1997;89:3909–3918.Google Scholar
  5. 5.
    Lin P, Bueso-Ramos C, Wilson CS, Mansoor A, Medeiros LJ. Waldenstrom macroglobulinemia involving extramedullary sites: morphologic and immunophenotypic findings in 44 patients. Am J Surg Pathol. 2003;27:1104–1113.PubMedCrossRefGoogle Scholar
  6. 6.
    Konoplev S, Medeiros LJ, Bueso-Ramos CE, Jorgensen JL, Lin P. Immunophenotypic profile of lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia. Am J Clin Pathol. 2005;124:414–420.PubMedCrossRefGoogle Scholar
  7. 7.
    Swerdlow SH, Berger F, Pileri SA. Lymphoplasmacytic lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., eds. World Health Organization Classification of Tumours of Hematopoietic and Lymphoid Tissues. Lyon, France: IARC Press; 2008:194–195.Google Scholar
  8. 8.
    Kristinsson SY, Bjorkholm M, Goldin LR, McMaster ML, Turesson I, Landgren O. Risk of lymphoproliferative disorders among first-degree relatives of lymphoplasmacytic lymphoma/Waldenstrom’s macroglobulinemia patients: a population-based study in Sweden. Blood. 2008;112(8):3052–3056.PubMedCrossRefGoogle Scholar
  9. 9.
    Kristinsson SY, Koshiol J, Goldin LR, et al. Genetics- and immune-related factors in pathogenesis of lymphoplasmacytic lymphoma/Waldenstrom’s macroglobulinemia. Clin Lymphoma. 2009;9:23–26.PubMedCrossRefGoogle Scholar
  10. 10.
    Treon SP, Hunter ZR, Aggarwal A, et al. Characterization of familial Waldenstrom’s macroglobulinemia. Ann Oncol. 2006;17:488–494.PubMedCrossRefGoogle Scholar
  11. 11.
    Kyle RA, Therneau TM, Rajkumar SV, et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med. 2002;346:564–569.PubMedCrossRefGoogle Scholar
  12. 12.
    Sahota SS, Forconi F, Ottensmeier CH, Stevenson FK. Origins of the malignant clone in typical Waldenstrom’s macroglobulinemia. Semin Oncol. 2003;30:136–141.PubMedCrossRefGoogle Scholar
  13. 13.
    Sahota SS, Forconi F, Ottensmeier CH, et al. Typical Waldenstrom macroglobulinemia is derived from a B-cell arrested after cessation of somatic mutation but prior to isotype switch events. Blood. 2002;100:1505–1507.PubMedGoogle Scholar
  14. 14.
    Walsh SH. Lymphoplasmacytic lymphoma/Waldenstrom’s macroglobulinemia derives from an extensively hypermutated B cell that lacks ongoing somatic hypermutation. Leuk Res. 2005;29:729–734.PubMedCrossRefGoogle Scholar
  15. 15.
    Kriangkum J, Taylor BJ, Reiman T, Belch AR, Pilarski LM. Origins of Waldenstrom’s macroglobulinemia: does it arise from an unusual B-cell precursor? Clin Lymphoma. 2005;5:217–219.PubMedCrossRefGoogle Scholar
  16. 16.
    Kriangkum J, Taylor BJ, Strachan E, et al. Impaired class switch recombination (CSR) in Waldenstrom macroglobulinemia (WM) despite apparently normal CSR machinery. Blood. 2006;107:2920–2927.PubMedCrossRefGoogle Scholar
  17. 17.
    Kriangkum J, Taylor BJ, Treon SP, Mant MJ, Belch AR, Pilarski LM. Clonotypic IgM V/D/J sequence analysis in Waldenstrom macroglobulinemia suggests an unusual B-cell origin and an expansion of polyclonal B cells in peripheral blood. Blood. 2004;104:2134–2142.PubMedCrossRefGoogle Scholar
  18. 18.
    Kriangkum J, Taylor BJ, Mant MJ, Treon SP, Belch AR, Pilarski LM. The malignant clone in Waldenstrom’s macroglobulinemia. Semin Oncol. 2003;30:132–135.PubMedCrossRefGoogle Scholar
  19. 19.
    Kriangkum J, Taylor BJ, Treon SP, et al. Molecular characterization of Waldenstrom’s macroglobulinemia reveals frequent occurrence of two B-cell clones having distinct IGH VDJ sequences. Clin Cancer Res. 2007;13:2005–2013.PubMedCrossRefGoogle Scholar
  20. 20.
    Martin-Jimenez P, Garcia-Sanz R, Sarasquete ME, et al. Functional class switch recombination may occur ‘in vivo’ in Waldenstrom macroglobulinaemia. Br J Haematol. 2007;136:114–116.PubMedCrossRefGoogle Scholar
  21. 21.
    Admirand JH, Rassidakis GZ, Abruzzo LV, Valbuena JR, Jones D, Medeiros LJ. Immunohistochemical detection of ZAP–70 in 341 cases of non-Hodgkin and Hodgkin lymphoma. Mod Pathol. 2004;17:954–961.PubMedCrossRefGoogle Scholar
  22. 22.
    San Miguel JF, Vidriales MB, Ocio E, et al. Immunophenotypic analysis of Waldenstrom’s macroglobulinemia. Semin Oncol. 2003;30:187–195.PubMedCrossRefGoogle Scholar
  23. 23.
    Mansoor A, Medeiros LJ, Weber DM, et al. Cytogenetic findings in lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia. Chromosomal abnormalities are associated with the polymorphous subtype and an aggressive clinical course. Am J Clin Pathol. 2001;116:543–549.PubMedCrossRefGoogle Scholar
  24. 24.
    Schop RFJ, Michael Kuehl W, Van Wier SA, et al. Waldenstrom macroglobulinemia neoplastic cells lack immunoglobulin heavy chain locus translocations but have frequent 6q deletions. Blood. 2002;100:2996–3001.PubMedCrossRefGoogle Scholar
  25. 25.
    Schop RF, Jalal SM, Van Wier SA, et al. Deletions of 17p13.1 and 13q14 are uncommon in Waldenstrom macroglobulinemia clonal cells and mostly seen at the time of disease progression. Cancer Genet Cytogenet. 2002;132:55–60.PubMedCrossRefGoogle Scholar
  26. 26.
    Ocio EM, Schop RF, Gonzalez B, et al. 6q deletion in Waldenstrom macroglobulinemia is associated with features of adverse prognosis. Br J Haematol. 2007;136:80–86.PubMedCrossRefGoogle Scholar
  27. 27.
    Brggio E, Keats JJ, Leleu X, et al. High resolution genomic analysis in Waldenstrom’s macroglobulinemia identifies disease-specific and common abnormalities with marginal zone lymphomas. Clin Lymphoma. 2009;9:39–42.PubMedCrossRefGoogle Scholar
  28. 28.
    Ackroyd S, O’Connor SJM, Owen RG. Rarity of IGH trans­locations in Waldenstrom macroglobulinemia. Cancer Genet Cytogenet. 2005;163:77–80.PubMedCrossRefGoogle Scholar
  29. 29.
    Schop RF, Kuehl WM, Van Wier SA, et al. Waldenstrom macroglobulinemia neoplastic cells lack immunoglobulin heavy chain locus translocations but have frequent 6q deletions. Blood. 2002;100:2996–3001.PubMedCrossRefGoogle Scholar
  30. 30.
    Cook JR, Aguilera NI, Reshmi-Skarja S, et al. Lack of PAX5 rearrangements in lymphoplasmacytic lymphomas: reassessing the reported association with t(9;14). Hum Pathol. 2004;35:447–454.PubMedCrossRefGoogle Scholar
  31. 31.
    Andrieux J, Fert-Ferrer S, Copin MC, et al. Three new cases of non-Hodgkin lymphoma with t(9;14)(p13;q32). Cancer Genet Cytogenet. 2003;145:65–69.PubMedCrossRefGoogle Scholar
  32. 32.
    Morrison AM, Jager U, Chott A, Schebesta M, Haas OA, Busslinger M. Deregulated PAX-5 transcription from a translocated IGH promoter in marginal zone lymphoma. Blood. 1998;92:3865–3878.PubMedGoogle Scholar
  33. 33.
    Offit K, Parsa NZ, Filippa D, Jhanwar SC, Chaganti RS. t(9;14)(p13;q32) denotes a subset of low-grade non-Hodgkin’s lymphoma with plasmacytoid differentiation. Blood. 1992;80:2594–2599.PubMedGoogle Scholar
  34. 34.
    Iida S, Rao PH, Ueda R, Chaganti RS, Dalla-Favera R. Chromosomal rearrangement of the PAX-5 locus in lymphoplasmacytic lymphoma with t(9;14)(p13;q32). Leuk Lymphoma. 1999;34:25–33.x`1PubMedGoogle Scholar
  35. 35.
    Braggio E, Keats JJ, Leleu X, et al. Identification of copy number abnormalities and inactivating mutations in two negative regulators of nuclear factor-KB signalling pathways in Waldenstrom’s macroglobulinemia. Cancer Res. 2009;69:3579–3588.PubMedCrossRefGoogle Scholar
  36. 36.
    McMaster ML, Goldin LR, Bai Y, et al. Genomewide linkage screen for Waldenstrom macroglobulinemia susceptibility loci in high-risk families. Am J Hum Genet. 2006;79:695–701.PubMedCrossRefGoogle Scholar
  37. 37.
    Chng WJ, Schop RF, Price-Troska T, et al. Gene-expression profiling of Waldenstrom macroglobulinemia reveals a phenotype more similar to chronic lymphocytic leukemia than multiple myeloma. Blood. 2006;108:2755–2763.PubMedCrossRefGoogle Scholar
  38. 38.
    Gutierrez NC, Ocio EM, de Las Rivas J, et al. Gene expression profiling of B lymphocytes and plasma cells from Waldenstrom’s macroglobulinemia: comparison with expression patterns of the same cell counterparts from chronic lymphocytic leukemia, multiple myeloma and normal individuals. Leukemia. 2007;21:541–549.PubMedCrossRefGoogle Scholar
  39. 39.
    Hatjiharissi E, Zhan F, Adamia BT, et al. Gene expression profiling of Waldenstrom’s macroglobulinemia reveals genes that may be related to disease pathogenesis. Hematologica. 200; 92:92–93 (suppl 2).Google Scholar
  40. 40.
    Mitsiades CS, Mitsiades N, Treon SP, Anderson KC. Proteomic analyses in Waldenstrom’s macroglobulinemia and other plasma cell dyscrasias. Semin Oncol. 2003;30:156–160.PubMedCrossRefGoogle Scholar
  41. 41.
    Baro C, Salido M, Domingo A, et al. Translocation t(9;14)(p13;q32) in cases of splenic marginal zone lymphoma. Haematologica. 2006;91:1289–1291.PubMedGoogle Scholar
  42. 42.
    Tournilhac O. Excess bone marrow mast cells constitutively express CD154 (CD40 ligand) in Waldenstrom’s macroglobulinemia and may support tumor cell growth through CD154/CD40 pathway. J Clin Oncol. 2004;22(14S):6555.Google Scholar
  43. 43.
    Hatjiharissi E, Ngo H, Leontovich AA, et al. Proteomic analysis of Waldenstrom macroglobulinemia. Cancer Res. 2007;67:3777–3784.PubMedCrossRefGoogle Scholar
  44. 44.
    Kostenko O, Tsacoumangos A, Crooks D, Kil SJ, Carlin C. Gab1 signaling is regulated by EGF receptor sorting in early endosomes. Oncogene. 2006;25:6604–6617.PubMedCrossRefGoogle Scholar
  45. 45.
    Mitsiades N, Mitsiades CS, Richardson PG, et al. Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Blood. 2003;101:4055–4062.PubMedCrossRefGoogle Scholar
  46. 46.
    Leleu X, Jia X, Runnels J, et al. The Akt pathway regulates survival and homing in Waldenstrom macroglobulinemia. Blood. 2007;110:4417–4426.PubMedCrossRefGoogle Scholar
  47. 47.
    Leleu X, Roccaro AM, Moreau AS, et al. Waldenstrom macroglobulinemia. Cancer Lett. 2008;270(1):95–107.PubMedCrossRefGoogle Scholar
  48. 48.
    Burwick N, Roccaro AM, Leleu X, Ghobrial IM. Targeted therapies in Waldenstrom macroglobulinemia. Curr Opin Investig Drugs. 2008;9:631–637.PubMedGoogle Scholar
  49. 49.
    Roccaro AM, Leleu X, Sacco A, et al. Dual targeting of the proteasome regulates survival and homing in Waldenstrom macroglobulinemia. Blood. 2008;111:4752–4763.PubMedCrossRefGoogle Scholar
  50. 50.
    Moreau AS, Jia X, Patterson CJ, et al. The HMG-CoA inhibitor, simvastatin, triggers in vitro anti-tumour effect and decreases IgM secretion in Waldenstrom macroglobulinaemia. Br J Haematol. 2008;142:775–785.PubMedCrossRefGoogle Scholar
  51. 51.
    Moreau AS, Jia X, Ngo HT, et al. Protein kinase C inhibitor enzastaurin induces in vitro and in vivo antitumor activity in Waldenstrom macroglobulinemia. Blood. 2007;109:4964–4972.PubMedCrossRefGoogle Scholar
  52. 52.
    Chang H, Samiee S, Li D, Patterson B, Chen CI, Stewart AK. Analysis of IGH translocations, chromosome 13q14 and 17p13.1(p53) deletions by fluorescence in situ hybridization in Waldenstrom’s macroglobulinemia: a single center study of 22 cases. Leukemia. 2004;18:1160–1162.PubMedCrossRefGoogle Scholar
  53. 53.
    Avet-Loiseau H, Garand R, Lode L, Robillard N, Bataille R. 14q32 Translocations discriminate IgM multiple myeloma from Waldenstrom’s macroglobulinemia. Semin Oncol. 2003;30:153–155.PubMedCrossRefGoogle Scholar
  54. 54.
    Valdez R, Finn WG, Ross CW, Singleton TP, Tworek JA, Schnitzer B. Waldenstrom macroglobulinemia caused by extranodal marginal zone B-cell lymphoma: a report of six cases. Am J Clin Pathol. 2001;116:683–690.PubMedCrossRefGoogle Scholar
  55. 55.
    Ye H, Chuang SS, Dogan A, Isaacson PG, Du MQ. t(1;14) and t(11;18) in the differential diagnosis of Waldenstrom’s macroglobulinemia. Mod Pathol. 2004;17:1150–1154.PubMedCrossRefGoogle Scholar
  56. 56.
    Streubel B, Simonitsch-Klupp I, Mullauer L, et al. Variable frequencies of MALT lymphoma-associated genetic aberrations in MALT lymphomas of different sites. Leukemia. 2004;18:1722–1726.PubMedCrossRefGoogle Scholar
  57. 57.
    Remstein ED, Kurtin PJ, Einerson RR, Paternoster SF, Dewald GW. Primary pulmonary MALT lymphomas show frequent and heterogeneous cytogenetic abnormalities, including aneuploidy and translocations involving API2 and MALT1 and IGH and MALT1. Leukemia. 2004;18:156–160.PubMedCrossRefGoogle Scholar
  58. 58.
    Ye H, Dogan A, Karran L, et al. BCL10 expression in normal and neoplastic lymphoid tissue. Nuclear localization in MALT lymphoma. Am J Pathol. 2000;157:1147–1154.PubMedGoogle Scholar
  59. 59.
    Merzianu M, Lin P, Medeiros L, et al. BCL-10 nuclear expression is present in a subset of lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia cases and correlates with extensive bone marrow disease. Mod Pathol. 2005;18(suppl 1):242A.Google Scholar
  60. 60.
    Pangalis GA, Kyrtsonis MC, Kontopidou FN, et al. Differential diagnosis of Waldenstrom’s macroglobulinemia and other B-cell disorders. Clinical Lymphoma. 2005;5:235–240.PubMedCrossRefGoogle Scholar
  61. 61.
    Berger F, Traverse-Glehen A, Felman P, et al. Clinicopathologic features of Waldenstrom’s macroglobulinemia and marginal zone lymphoma: are they distinct or the same entity? Clin Lymphoma. 2005;5:220–224.PubMedCrossRefGoogle Scholar
  62. 62.
    Ott MM, Rosenwald A, Katzenberger T, et al. Marginal zone B-cell lymphomas (MZBL) arising at different sites represent different biological entities. Genes Chromosomes Cancer. 2000;28:380–386.PubMedCrossRefGoogle Scholar
  63. 63.
    Hernandez JM, Garcia JL, Gutierrez NC, et al. Novel genomic imbalances in B-cell splenic marginal zone lymphomas revealed by comparative genomic hybridization and cytogenetics. Am J Pathol. 2001;158:1843–1850.PubMedGoogle Scholar
  64. 64.
    Berger F, Felman P, Thieblemont C, et al. Non-MALT marginal zone B-cell lymphomas: a description of clinical presentation and outcome in 124 patients. Blood. 2000;95:1950–1956.PubMedGoogle Scholar
  65. 65.
    Papadaki T, Stamatopoulos K, Mavrommatis T, Anagnostopoulos A, Anagnostou D. A unique case of IgD-only splenic marginal-zone lymphoma with mutated immunoglobulin genes: ontogenetic implications. Leuk Res. 2008;32:155–157.PubMedCrossRefGoogle Scholar
  66. 66.
    Papadaki T, Stamatopoulos K, Belessi C, et al. Splenic marginal-zone lymphoma: one or more entities? A histologic, immunohistochemical, and molecular study of 42 cases. Am J Surg Pathol. 2007;31:438–446.PubMedCrossRefGoogle Scholar
  67. 67.
    Parrens M, Gachard N, Petit B, et al. Splenic marginal zone lymphomas and lymphoplasmacytic lymphomas originate from B-cell compartments with two different antigen-exposure histories. Leukemia. 2008;22:1621–1624.PubMedCrossRefGoogle Scholar
  68. 68.
    Remstein ED, Hanson CA, Kyle RA, Hodnefield JM, Kurtin PJ. Despite apparent morphologic and immunophenotypic heterogeneity, Waldenstrom’s macroglobulinemia is consistently composed of cells along a morphologic continuum of small lymphocytes, plasmacytoid lymphocytes, and plasma cells. Semin Oncol. 2003;30:182–186.PubMedCrossRefGoogle Scholar
  69. 69.
    Sargent RL, Cook JR, Aguilera NI, et al. Fluorescence immunophenotypic and interphase cytogenetic characterization of nodal lymphoplasmacytic lymphoma. Am J Surg Pathol. 2008;32:1643–1653.PubMedCrossRefGoogle Scholar
  70. 70.
    Owen RG, Barrans SL, Richards SJ, et al. Waldenstrom macroglobulinemia. Development of diagnostic criteria and identification of prognostic factors. Am J Clin Pathol. 2001;116:420–428.PubMedCrossRefGoogle Scholar
  71. 71.
    Kyrtsonis MC, Vassilakopoulos TP, Angelopoulou MK, et al. Waldenstrom’s macroglobulinemia: clinical course and prognostic factors in 60 patients. Experience from a single hematology unit. Ann Hematol. 2001;80:722–727.PubMedCrossRefGoogle Scholar
  72. 72.
    Chubachi A, Ohtani H, Sakuyama M, et al. Diffuse large cell lymphoma occurring in a patient with Waldenstrom’s macroglobulinemia. Evidence for the two different clones in Richter’s syndrome. Cancer. 1991;68:781–785.PubMedCrossRefGoogle Scholar
  73. 73.
    Sekikawa T, Takahara S, Suzuki H, Takeda N, Yamada H, Horiguchi-Yamada J. Diffuse large B-cell lymphoma arising independently to lymphoplasmacytic lymphoma: a case of two lymphomas. Eur J Haematol. 2007;78:264–269.PubMedCrossRefGoogle Scholar
  74. 74.
    Rosales CM, Lin P, Mansoor A, Bueso-Ramos C, Medeiros LJ. Lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia associated with Hodgkin disease. A report of two cases. Am J Clin Pathol. 2001;116:34–40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Pei Lin
    • 1
  1. 1.Department of HematopathologyUniversity of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations