Advertisement

Marginal Zone B-Cell Lymphoma

  • Lynne V. Abruzzo
  • Rachel L. Sargent
Chapter
Part of the Molecular Pathology Library book series (MPLB, volume 4)

Abstract

Marginal zone lymphoma (MZL) of extranodal mucosa-associated lymphoid tissue (MALT lymphoma), nodal MZL, and splenic B-cell MZL share similar morphologic and immunophenotypic features. All are proliferations of small B lymphoid cells that colonize the marginal zone of reactive germinal centers (GC). These cells were previously described as “centrocyte-like” because their nuclei resemble those of small cleaved follicle center B cells, with slightly irregular nuclear contours, condensed chromatin, and inconspicuous nucleoli, but with more abundant pale cytoplasm. Although the different subtypes of MZL share histologic and immunophenotypic features, they have different clinical, cytogenetic, and molecular genetic features.

Keywords

Malt Lymphoma Marginal Zone Lymphoma Gastric Malt Lymphoma Splenic Marginal Zone Lymphoma Plasmacytic Differentiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Isaacson PG, Chott A, Nakamura S, et al. Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma). In: Swerdlow S, Campo E, Harris NL, et al., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon: International Agency for Research on Cancer; 2008:214–217.Google Scholar
  2. 2.
    Isaacson PG, Du MQ. MALT lymphoma: from morphology to molecules. Nat Rev Cancer. 2004;4:644–653.CrossRefPubMedGoogle Scholar
  3. 3.
    Isaacson P, Wright DH. Malignant lymphoma of mucosa-associated lymphoid tissue. A distinctive type of B-cell lymphoma. Cancer. 1983;52:1410–1416.CrossRefPubMedGoogle Scholar
  4. 4.
    Inagaki H. Mucosa-associated lymphoid tissue lymphoma: molecular pathogenesis and clinicopathological significance. Pathol Int. 2007;57:474–484.CrossRefPubMedGoogle Scholar
  5. 5.
    A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. The Non-Hodgkin’s Lymphoma Classification Project. Blood. 1997;89:3909–3918.Google Scholar
  6. 6.
    Radaszkiewicz T, Dragosics B, Bauer P. Gastrointestinal malignant lymphomas of the mucosa-associated lymphoid tissue: factors relevant to prognosis. Gastroenterology. 1992;102:1628–1638.PubMedGoogle Scholar
  7. 7.
    Thieblemont C, Bastion Y, Berger F, et al. Mucosa-associated lymphoid tissue gastrointestinal and nongastrointestinal lymphoma behavior: analysis of 108 patients. J Clin Oncol. 1997;15:1624–1630.PubMedGoogle Scholar
  8. 8.
    Hussell T, Isaacson PG, Crabtree JE, Spencer J. The response of cells from low-grade B-cell gastric lymphomas of mucosa-associated lymphoid tissue to Helicobacter pylori. Lancet. 1993;342:571–574.CrossRefPubMedGoogle Scholar
  9. 9.
    Wotherspoon AC, Doglioni C, Diss TC, et al. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet. 1993;342:575–577.CrossRefPubMedGoogle Scholar
  10. 10.
    Ferreri AJ, Guidoboni M, Ponzoni M, et al. Evidence for an association between Chlamydia psittaci and ocular adnexal lymphomas. J Natl Cancer Inst. 2004;96:586–594.PubMedGoogle Scholar
  11. 11.
    Ferreri AJ, Ponzoni M, Guidoboni M, et al. Bacteria-eradicating therapy with doxycycline in ocular adnexal MALT lymphoma: a multicenter prospective trial. J Natl Cancer Inst. 2006;98:1375–1382.PubMedGoogle Scholar
  12. 12.
    Cerroni L, Zochling N, Putz B, Kerl H. Infection by Borrelia burgdorferi and cutaneous B-cell lymphoma. J Cutan Pathol. 1997;24:457–461.CrossRefPubMedGoogle Scholar
  13. 13.
    Parsonnet J, Isaacson PG. Bacterial infection and MALT lymphoma. N Engl J Med. 2004;350:213–215.CrossRefPubMedGoogle Scholar
  14. 14.
    Isaacson PG. Mucosa-associated lymphoid tissue lymphoma. Semin Hematol. 1999;36:139–147.PubMedGoogle Scholar
  15. 15.
    Thieblemont C, Berger F, Dumontet C, et al. Mucosa-associated lymphoid tissue lymphoma is a disseminated disease in one third of 158 patients analyzed. Blood. 2000;95:802–806.PubMedGoogle Scholar
  16. 16.
    Armitage JO, Weisenburger DD. New approach to classifying non-Hodgkin’s lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin’s Lymphoma Classification Project. J Clin Oncol. 1998;16:2780–2795.PubMedGoogle Scholar
  17. 17.
    Raderer M, Streubel B, Woehrer S, et al. High relapse rate in patients with MALT lymphoma warrants lifelong follow-up. Clin Cancer Res. 2005;11:3349–3352.CrossRefPubMedGoogle Scholar
  18. 18.
    Wohrer S, Streubel B, Bartsch R, Chott A, Raderer M. Monoclonal immunoglobulin production is a frequent event in patients with mucosa-associated lymphoid tissue lymphoma. Clin Cancer Res. 2004;10:7179–7181.CrossRefPubMedGoogle Scholar
  19. 19.
    Ferry JA. Extranodal lymphoma. Arch Pathol Lab Med. 2008;132:565–578.PubMedGoogle Scholar
  20. 20.
    Ferry JA, Yang WI, Zukerberg LR, Wotherspoon AC, Arnold A, Harris NL. CD5+ extranodal marginal zone B-cell (MALT) lymphoma. A low grade neoplasm with a propensity for bone marrow involvement and relapse. Am J Clin Pathol. 1996;105:31–37.PubMedGoogle Scholar
  21. 21.
    Remstein ED, Dogan A, Einerson RR, et al. The incidence and anatomic site specificity of chromosomal translocations in primary extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) in North America. Am J Surg Pathol. 2006;30:1546–1553.PubMedGoogle Scholar
  22. 22.
    Streubel B, Simonitsch-Klupp I, Mullauer L, et al. Variable frequencies of MALT lymphoma-associated genetic aberrations in MALT lymphomas of different sites. Leukemia. 2004;18:1722–1726.CrossRefPubMedGoogle Scholar
  23. 23.
    Dierlamm J, Baens M, Wlodarska I, et al. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood. 1999;93:3601–3609.PubMedGoogle Scholar
  24. 24.
    Akagi T, Motegi M, Tamura A, et al. A novel gene, MALT1 at 18q21, is involved in t(11;18) (q21;q21) found in low-grade B-cell lymphoma of mucosa-associated lymphoid tissue. Oncogene. 1999;18:5785–5794.CrossRefPubMedGoogle Scholar
  25. 25.
    Morgan JA, Yin Y, Borowsky AD, et al. Breakpoints of the t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma lie within or near the previously undescribed gene MALT1 in chromosome 18. Cancer Res. 1999;59:6205–6213.PubMedGoogle Scholar
  26. 26.
    Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV. The TNFR2–TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell. 1995;83:1243–1252.CrossRefPubMedGoogle Scholar
  27. 27.
    Hofmann K, Bucher P, Tschopp J. The CARD domain: a new apoptotic signalling motif. Trends Biochem Sci. 1997;22:155–156.CrossRefPubMedGoogle Scholar
  28. 28.
    Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J. 1997;16:6914–6925.CrossRefPubMedGoogle Scholar
  29. 29.
    Inagaki H, Okabe M, Seto M, Nakamura S, Ueda R, Eimoto T. API2–MALT1 fusion transcripts involved in mucosa-associated lymphoid tissue lymphoma: multiplex RT-PCR detection using formalin-fixed paraffin-embedded specimens. Am J Pathol. 2001;158:699–706.PubMedGoogle Scholar
  30. 30.
    Lucas PC, Yonezumi M, Inohara N, et al. Bc110 and MALT1, independent targets of chromosomal translocation in malt lymphoma, cooperate in a novel NF-kappa B signaling pathway. J Biol Chem. 2001;276:19012–19019.CrossRefPubMedGoogle Scholar
  31. 31.
    Inagaki H, Nakamura T, Li C, et al. Gastric MALT lymphomas are divided into three groups based on responsiveness to Helicobacter Pylori eradication and detection of API2–MALT1 fusion. Am J Surg Pathol. 2004;28:1560–1567.PubMedGoogle Scholar
  32. 32.
    Ye H, Liu H, Attygalle A, et al. Variable frequencies of t(11;18)(q21;q21) in MALT lymphomas of different sites: significant association with CagA strains of H pylori in gastric MALT lymphoma. Blood. 2003;102:1012–1018.CrossRefPubMedGoogle Scholar
  33. 33.
    Streubel B, Vinatzer U, Lamprecht A, Raderer M, Chott A. T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia. 2005;19:652–658.PubMedGoogle Scholar
  34. 34.
    Streubel B, Lamprecht A, Dierlamm J, et al. T(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood. 2003;101:2335–2339.CrossRefPubMedGoogle Scholar
  35. 35.
    Sanchez-Izquierdo D, Buchonnet G, Siebert R, et al. MALT1 is deregulated by both chromosomal translocation and amplification in B-cell non-Hodgkin lymphoma. Blood. 2003;101:4539–4546.CrossRefPubMedGoogle Scholar
  36. 36.
    Ye H, Dogan A, Karran L, et al. BCL10 expression in normal and neoplastic lymphoid tissue. Nuclear localization in MALT lymphoma. Am J Pathol. 2000;157:1147–1154.PubMedGoogle Scholar
  37. 37.
    Willis TG, Jadayel DM, Du MQ, et al. Bc110 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell. 1999;96:35–45.CrossRefPubMedGoogle Scholar
  38. 38.
    Zhang Q, Siebert R, Yan M, et al. Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32). Nat Genet. 1999;22:63–68.CrossRefPubMedGoogle Scholar
  39. 39.
    Thome M. CARMA1, BCL-10 and MALT1 in lymphocyte development and activation. Nat Rev Immunol. 2004;4:348–359.CrossRefPubMedGoogle Scholar
  40. 40.
    Chuang SS, Liu H, Martin-Subero JI, Siebert R, Huang WT, Ye H. Pulmonary mucosa-associated lymphoid tissue lymphoma with strong nuclear B-cell CLL/lymphoma 10 (BCL10) expression and novel translocation t(1;2)(p22;p12)/immunoglobulin kappa chain-BCL10. J Clin Pathol. 2007;60:727–728.CrossRefPubMedGoogle Scholar
  41. 41.
    Barrans SL, Fenton JA, Banham A, Owen RG, Jack AS. Strong expression of FOXP1 identifies a distinct subset of diffuse large B-cell lymphoma (DLBCL) patients with poor outcome. Blood. 2004;104:2933–2935.CrossRefPubMedGoogle Scholar
  42. 42.
    Banham AH, Connors JM, Brown PJ, et al. Expression of the FOXP1 transcription factor is strongly associated with inferior survival in patients with diffuse large B-cell lymphoma. Clin Cancer Res. 2005;11:1065–1072.PubMedGoogle Scholar
  43. 43.
    Sagaert X, de Paepe P, Libbrecht L, et al. Forkhead box protein P1 expression in mucosa-associated lymphoid tissue lymphomas predicts poor prognosis and transformation to diffuse large B-cell lymphoma. J Clin Oncol. 2006;24:2490–2497.CrossRefPubMedGoogle Scholar
  44. 44.
    Wlodarska I, Veyt E, De Paepe P, et al. FOXP1, a gene highly expressed in a subset of diffuse large B-cell lymphoma, is recurrently targeted by genomic aberrations. Leukemia. 2005;19:1299–1305.CrossRefPubMedGoogle Scholar
  45. 45.
    Coffer PJ, Burgering BM. Forkhead-box transcription factors and their role in the immune system. Nat Rev Immunol. 2004;4:889–899.CrossRefPubMedGoogle Scholar
  46. 46.
    Banham AH, Beasley N, Campo E, et al. The FOXP1 winged helix transcription factor is a novel candidate tumor suppressor gene on chromosome 3p. Cancer Res. 2001;61:8820–8829.PubMedGoogle Scholar
  47. 47.
    Hu H, Wang B, Borde M, et al. Foxp1 is an essential transcriptional regulator of B cell development. Nat Immunol. 2006;7:819–826.CrossRefPubMedGoogle Scholar
  48. 48.
    Zhou Y, Ye H, Martin-Subero JI, et al. Distinct comparative genomic hybridisation profiles in gastric mucosa-associated lymphoid tissue lymphomas with and without t(11;18)(q21;q21). Br J Haematol. 2006;133:35–42.CrossRefPubMedGoogle Scholar
  49. 49.
    Zhou Y, Ye H, Martin-Subero JI, et al. The pattern of genomic gains in salivary gland MALT lymphomas. Haematologica. 2007;92:921–927.CrossRefPubMedGoogle Scholar
  50. 50.
    Kim WS, Honma K, Karnan S, et al. Genome-wide array-based comparative genomic hybridization of ocular marginal zone B cell lymphoma: comparison with pulmonary and nodal marginal zone B cell lymphoma. Genes Chromosomes Cancer. 2007;46:776–783.CrossRefPubMedGoogle Scholar
  51. 51.
    Harris NL, Isaacson PG, Grogan TM, Jaffe ES. Heavy chain diseases. In: Swerdlow S, Campo E, Harris NL, et al., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: International Agency for Research on Cancer; 2008:196–199.Google Scholar
  52. 52.
    Price SK. Immunoproliferative small intestinal disease: a study of 13 cases with alpha heavy-chain disease. Histopathology. 1990;17:7–17.CrossRefPubMedGoogle Scholar
  53. 53.
    Ramot B, Shahin N, Bubis JJ. Malabsorption syndrome in lymphoma of small intestine. Isr Med J. 1965;47:221–226.Google Scholar
  54. 54.
    Seligmann M. Immunohistochemical, clinical and pathologic features of alpha-heavy-chain disease. Arch Intern med. 1975;135:78–82.CrossRefPubMedGoogle Scholar
  55. 55.
    Lecuit M, Abachin E, Martin A, et al. Immunoproliferative small intestinal disease associated with Campylobacter jejuni. N Engl J Med. 2004;350:239–248.CrossRefPubMedGoogle Scholar
  56. 56.
    Ben-Ayed F, Halphen M, Najjar T, et al. Treatment of alpha chain disease. Results of a prospective study in 21 Tunisian patients by the Tunisian-French intestinal Lymphoma Study Group. Cancer. 1989;63:1251–1256.CrossRefPubMedGoogle Scholar
  57. 57.
    Fermand JP, Brouet JC. Heavy-chain diseases. Hematol Oncol Clin North Am. 1999;13:1281–1294.CrossRefPubMedGoogle Scholar
  58. 58.
    Isaacson PG, Dogan A, Price SK, Spencer J. Immunoproliferative small-intestinal disease. An immunohistochemical study. Am J Surg Pathol. 1989;13:1023–1033.CrossRefPubMedGoogle Scholar
  59. 59.
    Campo E, Pileri SA, Jaffe ES, Muller-Hermelink HK, Nathwani BN. Nodal marginal zone lymphoma. In: Swerdlow S, Campo E, Harris NL, et al., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: International Agency for Research on Cancer; 2008.Google Scholar
  60. 60.
    Berger F, Felman P, Thieblemont C, et al. Non-MALT marginal zone B-cell lymphomas: a description of clinical presentation and outcome in 124 patients. Blood. 2000;95:1950–1956.PubMedGoogle Scholar
  61. 61.
    Nathwani BN, Anderson JR, Armitage JO, et al. Marginal zone B-cell lymphoma: a clinical comparison of nodal and mucosa-associated lymphoid tissue types. Non-Hodgkin’s Lymphoma Classification Project. J Clin Oncol. 1999;17:2486–2492.PubMedGoogle Scholar
  62. 62.
    Arcaini L, Paulli M, Burcheri S, et al. Primary nodal marginal zone B-cell lymphoma: clinical features and prognostic assessment of a rare disease. Br J Haematol. 2007;136:301–304.CrossRefPubMedGoogle Scholar
  63. 63.
    Marasca R, Vaccari P, Luppi M, et al. Immunoglobulin gene mutations and frequent use of VH1–69 and VH4–34 segments in hepatitis C virus-positive and hepatitis C virus-negative nodal marginal zone B-cell lymphoma. Am J Pathol. 2001;159:253–261.PubMedGoogle Scholar
  64. 64.
    Mele A, Pulsoni A, Bianco E, et al. Hepatitis C virus and B-cell non-Hodgkin lymphomas: an Italian multicenter case-control study. Blood. 2003;102:996–999.CrossRefPubMedGoogle Scholar
  65. 65.
    Camacho FI, Algara P, Mollejo M, et al. Nodal marginal zone lymphoma: a heterogeneous tumor: a comprehensive analysis of a series of 27 cases. Am J Surg Pathol. 2003;27:762–771.CrossRefPubMedGoogle Scholar
  66. 66.
    Traverse-Glehen A, Felman P, Callet-Bauchu E, et al. A clinicopathological study of nodal marginal zone B-cell lymphoma. A report on 21 cases. Histopathology. 2006;48:162–173.CrossRefPubMedGoogle Scholar
  67. 67.
    Kahl B, Yang D. Marginal zone lymphomas: management of nodal, splenic, and MALT NHL. Hematology Am Soc Hematol Educ Program. 2008;359–364.Google Scholar
  68. 68.
    Mollejo M, Camacho FI, Algara P, Ruiz-Ballesteros E, Garcia JF, Piris MA. Nodal and splenic marginal zone B cell lymphomas. Hematol Oncol. 2005;23:108–118.CrossRefPubMedGoogle Scholar
  69. 69.
    Campo E, Miquel R, Krenacs L, Sorbara L, Raffeld M, Jaffe ES. Primary nodal marginal zone lymphomas of splenic and MALT type. Am J Surg Pathol. 1999;23:59–68.CrossRefPubMedGoogle Scholar
  70. 70.
    Nizze H, Cogliatti SB, von Schilling C, Feller AC, Lennert K. Monocytoid B-cell lymphoma: morphological variants and relationship to low-grade B-cell lymphoma of mucosa-associated lymphoid tissue. Histopathology. 1991;18:403–414.CrossRefPubMedGoogle Scholar
  71. 71.
    Tierens A, Delabie J, Pittaluga S, Driessen A, DeWolf-Peeters C. Mutation analysis of the rearranged immunoglobulin heavy chain genes of marginal zone cell lymphomas indicates an origin from different marginal zone B lymphocyte subsets. Blood. 1998;91:2381–2386.PubMedGoogle Scholar
  72. 72.
    Conconi A, Bertoni F, Pedrinis E, et al. Nodal marginal zone B-cell lymphomas may arise from different subsets of marginal zone B lymphocytes. Blood. 2001;98:781–786.CrossRefPubMedGoogle Scholar
  73. 73.
    Traverse-Glehen A, Davi F, Ben Simon E, et al. Analysis of VH genes in marginal zone lymphoma reveals marked heterogeneity between splenic and nodal tumors and suggests the existence of clonal selection. Haematologica. 2005;90:470–478.PubMedGoogle Scholar
  74. 74.
    Brynes RK, Almaguer PD, Leathery KE, et al. Numerical cytogenetic abnormalities of chromosomes 3, 7, and 12 in marginal zone B-cell lymphomas. Mod Pathol. 1996;9:995–1000.PubMedGoogle Scholar
  75. 75.
    Ferreira BI, Garcia JF, Suela J, et al. Comparative genome profiling across subtypes of low-grade B-cell lymphoma identifies type-specific and common aberrations that target genes with a role in B-cell neoplasia. Haematologica. 2008;93:670–679.CrossRefPubMedGoogle Scholar
  76. 76.
    Taddesse-Heath L, Pittaluga S, Sorbara L, Bussey M, Raffeld M, Jaffe ES. Marginal zone B-cell lymphoma in children and young adults. Am J Surg Pathol. 2003;27:522–531.CrossRefPubMedGoogle Scholar
  77. 77.
    Isaacson PG, Piris MA, Berger F, et al. Splenic B-cell marginal zone lymphoma. In: Swerdlow S, Campo E, Harris NL, et al., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: International Agency for Research on Cancer; 2008.Google Scholar
  78. 78.
    Matutes E, Oscier D, Montalban C, et al. Splenic marginal zone lymphoma proposals for a revision of diagnostic, staging and therapeutic criteria. Leukemia. 2008;22:487–495.CrossRefPubMedGoogle Scholar
  79. 79.
    Thieblemont C, Felman P, Berger F, et al. Treatment of splenic marginal zone B-cell lymphoma: an analysis of 81 patients. Clin Lymphoma. 2002;3:41–47.CrossRefPubMedGoogle Scholar
  80. 80.
    Dungarwalla M, Appiah-Cubi S, Kulkarni S, et al. High-grade transformation in splenic marginal zone lymphoma with circulating villous lymphocytes: the site of transformation influences response to therapy and prognosis. Br J Haematol. 2008;143:71–74.CrossRefPubMedGoogle Scholar
  81. 81.
    Algara P, Mateo MS, Sanchez-Beato M, et al. Analysis of the IgV(H) somatic mutations in splenic marginal zone lymphoma defines a group of unmutated cases with frequent 7q deletion and adverse clinical course. Blood. 2002;99:1299–1304.CrossRefPubMedGoogle Scholar
  82. 82.
    Vega F, Cho-Vega JH, Lennon PA, et al. Splenic marginal zone lymphomas are characterized by loss of interstitial regions of chromosome 7q, 7q31.32 and 7q36.2 that include the protection of telomere 1 (POT1) and sonic hedgehog (SHH) genes. Br J Haematol. 2008;142(2):216–226.CrossRefPubMedGoogle Scholar
  83. 83.
    Baro C, Salido M, Espinet B, et al. New chromosomal alterations in a series of 23 splenic marginal zone lymphoma patients revealed by Spectral Karyotyping (SKY). Leuk Res. 2008;32:727–736.CrossRefPubMedGoogle Scholar
  84. 84.
    Andersen CL, Gruszka-Westwood A, Atkinson S, et al. Recurrent genomic imbalances in B-cell splenic marginal-zone lymphoma revealed by comparative genomic hybridization. Cancer Genet Cytogenet. 2005;156:122–128.CrossRefPubMedGoogle Scholar
  85. 85.
    Boonstra R, Bosga-Bouwer A, van Imhoff GW, et al. Splenic marginal zone lymphomas presenting with splenomegaly and typical immunophenotype are characterized by allelic loss in 7q31–32. Mod Pathol. 2003;16:1210–1217.CrossRefPubMedGoogle Scholar
  86. 86.
    Ruiz-Ballesteros E, Mollejo M, Rodriguez A, et al. Splenic marginal zone lymphoma: proposal of new diagnostic and prognostic markers identified after tissue and cDNA microarray analysis. Blood. 2005;106:1831–1838.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Lynne V. Abruzzo
    • 1
  • Rachel L. Sargent
    • 1
  1. 1.Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations