Proteomics of Human Malignant Lymphoma

  • Megan S. Lim
  • Rodney R. Miles
  • Kojo S. J. Elenitoba-Johnson
Part of the Molecular Pathology Library book series (MPLB, volume 4)


The proteome represents the total complement of proteins present in a complex, an organelle, a cell, tissue, or an organism. Proteomics encompass the multifaceted study of protein expression, interactions, posttranslational modification, and function at the cellular level. Mass spectrometry offers significant opportunities for the analysis of single proteins and the unbiased large-scale analysis of proteins in complex mixtures. The ability to conduct large-scale investigation of proteins in an unbiased fashion dramatically improves the opportunities for biological discovery and is relevant for the elucidation of novel biological insights into physiology and disease. In this regard, mass spectrometry is considered a key technology that will drive the achievement of several milestones in the identification of key proteins involved in disease detection and treatment. This chapter provides a synopsis of the principles of the techniques employed in the current state-of-the art proteomics and the opportunities that this suite of technologies offers in biological discovery as it relates to human lymphomas. Advances in mass spectrometry-based proteomics have shifted the paradigm of translational cancer research (for a review of background on proteomics and mass spectrometry see). The achievement of the ultimate goals of identifying biomarkers for diagnosis and prognosis and the development of novel agents for therapy will require significant effort in understanding the basic protein building blocks and the global proteomic circuitry.


Follicular Lymphoma Hodgkin Lymphoma Anaplastic Large Cell Lymphoma Reverse Phase Protein Array Activate Leukocyte Cell Adhesion Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Blackstock WP, Weir MP. Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol. 1999;17(3):121–127.CrossRefPubMedGoogle Scholar
  2. 2.
    Lim MS, Elenitoba-Johnson KS. Proteomics in pathology research. Lab Invest. 2004;84(10):1227–1244.CrossRefPubMedGoogle Scholar
  3. 3.
    Mirza SP, Olivier M. Methods and approaches for the comprehensive characterization and quantification of cellular proteomes using mass spectrometry. Physiol Genomics. 2008;33(1):3–11.PubMedGoogle Scholar
  4. 4.
    Qian WJ, Jacobs JM, Liu T, Camp DG II, Smith RD. Advances and challenges in liquid chromatography-mass spectrometry-based proteomics profiling for clinical applications. Mol Cell Proteomics. 2006;5(10):1727–1744.PubMedGoogle Scholar
  5. 5.
    Ahram M, Flaig MJ, Gillespie JW, et al. Evaluation of ethanol-fixed, paraffin-embedded tissues for proteomic applications. Proteomics. 2003;3(4):413–421.CrossRefPubMedGoogle Scholar
  6. 6.
    Crockett DK, Lin Z, Vaughn CP, Lim MS, Elenitoba-Johnson KS. Identification of proteins from formalin-fixed paraffin-embedded cells by LC-MS/MS. Lab Invest J Tech Methods Pathol. 2005;85(11):1405–1415.Google Scholar
  7. 7.
    Hood BL, Darfler MM, Guiel TG, et al. Proteomic analysis of formalin-fixed prostate cancer tissue. Mol Cell Proteomics. 2005;4(11):1741–1753.PubMedGoogle Scholar
  8. 8.
    Li C, Hong Y, Tan YX, et al. Accurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinoma using laser capture microdissection coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry. Mol Cell Proteomics. 2004;3(4):399–409.PubMedGoogle Scholar
  9. 9.
    Nishizuka S, Charboneau L, Young L, et al. Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays. Proc Natl Acad Sci USA. 2003;100(24):14229–14234.CrossRefPubMedGoogle Scholar
  10. 10.
    Yates JR III, Eng JK, McCormack AL, Schieltz D. Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem. 1995;67(8):1426–1436.CrossRefPubMedGoogle Scholar
  11. 11.
    MacCoss MJ, McDonald WH, Saraf A, et al. Shotgun identification of protein modifications from protein complexes and lens tissue. Proc Natl Acad Sci USA. 2002;99(12):7900–7905.CrossRefPubMedGoogle Scholar
  12. 12.
    Orenes-Pinero E, Corton M, Gonzalez-Peramato P, et al. Searching urinary tumor markers for bladder cancer using a two-dimensional differential gel electrophoresis (2D-DIGE) approach. J Proteome Res. 2007;6(11):4440–4448.CrossRefPubMedGoogle Scholar
  13. 13.
    Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 1999;17(10):994–999.CrossRefPubMedGoogle Scholar
  14. 14.
    DeSouza L, Diehl G, Rodrigues MJ, et al. Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J Proteome Res. 2005;4(2):377–386.CrossRefPubMedGoogle Scholar
  15. 15.
    Ong SE, Foster LJ, Mann M. Mass spectrometric-based approaches in quantitative proteomics. Methods. 2003;29(2):124–130.CrossRefPubMedGoogle Scholar
  16. 16.
    Dent AL, Doherty TM, Paul WE, Sher A, Staudt LM. BCL-6-deficient mice reveal an IL-4-independent, STAT6-dependent pathway that controls susceptibility to infection by Leishmania major. J Immunol. 1999;163(4):2098–2103.PubMedGoogle Scholar
  17. 17.
    Shaffer AL, Yu X, He Y, Boldrick J, Chan EP, Staudt LM. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity. 2000;13(2):199–212.CrossRefPubMedGoogle Scholar
  18. 18.
    Ye BH, Cattoretti G, Shen Q, et al. The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nat Genet. 1997;16(2):161–170.CrossRefPubMedGoogle Scholar
  19. 19.
    Chang CC, Ye BH, Chaganti RS, Dalla-Favera R. BCL-6, a POZ/zinc-finger protein, is a sequence-specific transcriptional repressor. Proc Natl Acad Sci USA. 1996;93(14):6947–6952.CrossRefPubMedGoogle Scholar
  20. 20.
    Lemercier C, Brocard MP, Puvion-Dutilleul F, Kao HY, Albagli O, Khochbin S. Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor. J Biol Chem. 2002;277(24):22045–22052.CrossRefPubMedGoogle Scholar
  21. 21.
    Dhordain P, Albagli O, Ansieau S, et al. The BTB/POZ domain targets the LAZ3/BCL6 oncoprotein to nuclear dots and mediates homomerisation in vivo. Oncogene. 1995;11(12):2689–2697.PubMedGoogle Scholar
  22. 22.
    Miles RR, Crockett DK, Lim MS, Elenitoba-Johnson KS. Analysis of BCL6-interacting proteins by tandem mass spectrometry. Mol Cell Proteomics. 2005;4(12):1898–1909.PubMedGoogle Scholar
  23. 23.
    Lin Z, Jenson SD, Lim MS, Elenitoba-Johnson KS. Application of SELDI-TOF mass spectrometry for the identification of differentially expressed proteins in transformed follicular lymphoma. Mod Pathol. 2004;17(6):670–678.CrossRefPubMedGoogle Scholar
  24. 24.
    Kaufmann SH, Gores GJ. Apoptosis in cancer: cause and cure. Bioessays. 2000;22(11):1007–1017.CrossRefPubMedGoogle Scholar
  25. 25.
    Lee JM, Bernstein A. Apoptosis, cancer and the p53 tumour suppressor gene. Cancer Metastasis Rev. 1995;14(2):149–161.CrossRefPubMedGoogle Scholar
  26. 26.
    Reed JC. Mechanisms of apoptosis avoidance in cancer. Curr Opin Oncol. 1999;11(1):68–75.CrossRefPubMedGoogle Scholar
  27. 27.
    Elenitoba-Johnson KS, Jenson SD, Abbott RT, et al. Involvement of multiple signaling pathways in follicular lymphoma transformation: p38-mitogen-activated protein kinase as a target for therapy. Proc Natl Acad Sci USA. 2003;100(12):7259–7264.CrossRefPubMedGoogle Scholar
  28. 28.
    Lin Z, Crockett DK, Jenson SD, Lim MS, Elenitoba-Johnson KS. Quantitative proteomic and transcriptional analysis of the response to the p38 mitogen-activated protein kinase inhibitor SB203580 in transformed follicular lymphoma cells. Mol Cell Proteomics. 2004;3(8):820–833.PubMedGoogle Scholar
  29. 29.
    Cairo MS, Raetz E, Perkins SL. Non-Hodgkin lymphoma in children. In: Kufe DWP RR, Weichselbaum RR, Bast RC Jr, Gansler TS, Holland JF, Frei E III, ed. Cancer Medicine. 7th ed. Hamilton, London: BC Decker, Inc; 2006:1962–1975Google Scholar
  30. 30.
    Henrich S, Cordwell SJ, Crossett B, Baker MS, Christopherson RI. The nuclear proteome and DNA-binding fraction of human Raji lymphoma cells. Biochim Biophys Acta. 2007;1774(4):413–432.PubMedGoogle Scholar
  31. 31.
    Ma Y, Visser L, Roelofsen H, et al. Proteomics analysis of Hodgkin lymphoma: identification of new players involved in the cross-talk between HRS cells and infiltrating lymphocytes. Blood. 2008;111(4):2339–2346.CrossRefPubMedGoogle Scholar
  32. 32.
    Wallentine JC, Kim KK, Seiler CE III, et al. Comprehensive identification of proteins in Hodgkin lymphoma-derived Reed-Sternberg cells by LC-MS/MS. Lab Invest. 2007;87(11):1113–1124.CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang X, Wang B, Zhang XS, Li ZM, Guan ZZ, Jiang WQ. Serum diagnosis of diffuse large B-cell lymphomas and further identification of response to therapy using SELDI-TOF-MS and tree analysis patterning. BMC Cancer. 2007;7:235.CrossRefPubMedGoogle Scholar
  34. 34.
    Roy S, Josephson SA, Fridlyand J, et al. Protein biomarker identification in the CSF of patients with CNS lymphoma. J Clin Oncol. 2008;26(1):96–105.CrossRefPubMedGoogle Scholar
  35. 35.
    Vaughn CP, Crockett DK, Lin Z, Lim MS, Elenitoba-Johnson KS. Identification of proteins released by follicular lymphoma-derived cells using a mass spectrometry-based approach. Proteomics. 2006;6(10):3223–3230.CrossRefPubMedGoogle Scholar
  36. 36.
    van Kempen LC, van den Oord JJ, van Muijen GN, Weidle UH, Bloemers HP, Swart GW. Activated leukocyte cell adhesion molecule/CD166, a marker of tumor progression in primary malignant melanoma of the skin. Am J Pathol. 2000;156(3):769–774.PubMedGoogle Scholar
  37. 37.
    Kristiansen G, Pilarsky C, Wissmann C, et al. ALCAM/CD166 is up-regulated in low-grade prostate cancer and progressively lost in high-grade lesions. Prostate. 2003;54(1):34–43.CrossRefPubMedGoogle Scholar
  38. 38.
    Weichert W, Knosel T, Bellach J, Dietel M, Kristiansen G. ALCAM/CD166 is overexpressed in colorectal carcinoma and correlates with shortened patient survival. J Clin Pathol. 2004;57(11):1160–1164.CrossRefPubMedGoogle Scholar
  39. 39.
    Ueda K, Nakanishi T, Shimizu A, Takubo T, Matsuura N. Identification of L-plastin autoantibody in plasma of patients with non-Hodgkin’s lymphoma using a proteomics-based analysis. Ann Clin Biochem. 2008;45(Pt 1):65–69.CrossRefPubMedGoogle Scholar
  40. 40.
    Iwahara T, Fujimoto J, Wen D, et al. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene. 1997;14(4):439–449.CrossRefPubMedGoogle Scholar
  41. 41.
    Morris SW, Naeve C, Mathew P, et al. ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin’s lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK) [published erratum appears in Oncogene 1997 Dec 4;15(23):2883]. Oncogene. 1997;14(18):2175–2188.CrossRefPubMedGoogle Scholar
  42. 42.
    Souttou B, Carvalho NB, Raulais D, Vigny M. Activation of anaplastic lymphoma kinase receptor tyrosine kinase induces neuronal differentiation through the mitogen-activated protein kinase pathway. J Biol Chem. 2001;276(12):9526–9531.CrossRefPubMedGoogle Scholar
  43. 43.
    Motegi A, Fujimoto J, Kotani M, Sakuraba H, Yamamoto T. ALK receptor tyrosine kinase promotes cell growth and neurite outgrowth. J Cell Sci. 2004;117(Pt 15):3319–3329.CrossRefPubMedGoogle Scholar
  44. 44.
    Powers C, Aigner A, Stoica GE, McDonnell K, Wellstein A. Pleiotrophin signaling through anaplastic lymphoma kinase is rate-limiting for glioblastoma growth. J Biol Chem. 2002;277(16):14153–14158.CrossRefPubMedGoogle Scholar
  45. 45.
    Stoica GE, Kuo A, Powers C, et al. Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J Biol Chem. 2002;277(39):35990–35998.CrossRefPubMedGoogle Scholar
  46. 46.
    Bischof D, Pulford K, Mason DY, Morris SW. Role of the nucleophosmin (NPM) portion of the non-Hodgkin’s lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis. Mol Cell Biol. 1997;17(4):2312–2325.PubMedGoogle Scholar
  47. 47.
    Shiota M, Mori S. Anaplastic large cell lymphomas expressing the novel chimeric protein p80NPM/ALK: a distinct clinicopathologic entity. Leukemia. 1997;11(Suppl 3):538–540.PubMedGoogle Scholar
  48. 48.
    Bai RY, Dieter P, Peschel C, Morris SW, Duyster J. Nucleophosmin-anaplastic lymphoma kinase of large-cell anaplastic lymphoma is a constitutively active tyrosine kinase that utilizes phospholipase C-gamma to mediate its mitogenicity. Mol Cell Biol. 1998;18:6951–6961.PubMedGoogle Scholar
  49. 49.
    Slupianek A, Nieborowska-Skorska M, Hoser G, et al. Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis. Cancer Res. 2001;61(5):2194–2199.PubMedGoogle Scholar
  50. 50.
    Bai RY, Ouyang T, Miething C, Morris SW, Peschel C, Duyster J. Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood 2000;96:4319–4327PubMedGoogle Scholar
  51. 51.
    Amin HM, Medeiros LJ, Ma Y, et al. Inhibition of JAK3 induces apoptosis and decreases anaplastic lymphoma kinase activity in anaplastic large cell lymphoma. Oncogene. 2003;22(35):5399–5407.CrossRefPubMedGoogle Scholar
  52. 52.
    Zamo A, Chiarle R, Piva R, et al. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene. 2002;21(7):1038–1047.CrossRefPubMedGoogle Scholar
  53. 53.
    Cussac D, Greenland C, Roche S, et al. Nucleophosmin-anaplastic lymphoma kinase of anaplastic large-cell lymphoma recruits, activates, and uses pp 60c-src to mediate its mitogenicity. Blood. 2004;103(4):1464–1471.CrossRefPubMedGoogle Scholar
  54. 54.
    Piva R, Pellegrino E, Inghirami G. Identification and validation of the anaplastic large cell lymphoma signature. Adv Exp Med Biol. 2007;604:129–136.CrossRefPubMedGoogle Scholar
  55. 55.
    Sjostrom C, Seiler C, Crockett DK, Tripp SR, Elenitoba Johnson KS, Lim MS. Global proteome profiling of NPM/ALK-positive anaplastic large cell lymphoma. Exp Hematol. 2007;35(8):1240–1248.CrossRefPubMedGoogle Scholar
  56. 56.
    Zeeberg BR, Feng W, Wang G, et al. GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 2003;4(4):R28.CrossRefPubMedGoogle Scholar
  57. 57.
    Cussac D, Pichereaux C, Colomba A, et al. Proteomic analysis of anaplastic lymphoma cell lines: identification of potential tumour markers. Proteomics 2006;6(10):3210–3222.CrossRefPubMedGoogle Scholar
  58. 58.
    Crockett DK, Lin Z, Elenitoba-Johnson KS, Lim MS. Identification of NPM-ALK interacting proteins by tandem mass spectrometry. Oncogene. 2004;23(15):2617–2629.CrossRefPubMedGoogle Scholar
  59. 59.
    Ruchatz H, Coluccia AM, Stano P, Marchesi E, Gambacorti-Passerini C. Constitutive activation of Jak2 contributes to proliferation and resistance to apoptosis in NPM/ALK-transformed cells. Exp Hematol. 2003;31(4):309–315.CrossRefPubMedGoogle Scholar
  60. 60.
    Zhang Q, Raghunath PN, Xue L, et al. Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma. J Immunol. 2002;168(1):466–474.PubMedGoogle Scholar
  61. 61.
    Bassermann F, von Klitzing C, Munch S, et al. NIPA defines an SCF-type mammalian E3 ligase that regulates mitotic entry. Cell. 2005;122(1):45–57.CrossRefPubMedGoogle Scholar
  62. 62.
    Chiarle R, Simmons WJ, Cai H, et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med. 2005;11(6):623–629.CrossRefPubMedGoogle Scholar
  63. 63.
    Voena C, Conte C, Ambrogio C, et al. The tyrosine phosphatase Shp2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration. Cancer Res. 2007;67(9):4278–4286.CrossRefPubMedGoogle Scholar
  64. 64.
    Ambrogio C, Voena C, Manazza AD, et al. p130Cas mediates the transforming properties of the anaplastic lymphoma kinase. Blood. 2005;106(12):3907–3916.CrossRefPubMedGoogle Scholar
  65. 65.
    Neckers L, Mimnaugh E, Schulte TW. Hsp90 as an anti-cancer target. Drug Resist Updat. 1999;2(3):165–172.CrossRefPubMedGoogle Scholar
  66. 66.
    Bonvini P, Gastaldi T, Falini B, Rosolen A. Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK(+) CD30(+) lymphoma cells by the Hsp90 antagonist 17-allylamin0,17-demethoxygeldanamycin. Cancer Res. 2002;62(5):1559–1566.PubMedGoogle Scholar
  67. 67.
    Bonvini P, Dalla Rosa H, Vignes N, Rosolen A. Ubiquitination and proteasomal degradation of nucleophosmin-anaplastic lymphoma kinase induced by 17-allylamino-demethoxygeldanamycin: role of the co-chaperone carboxyl heat shock protein 70-interacting protein. Cancer Res. 2004;64(9):3256–3264.CrossRefPubMedGoogle Scholar
  68. 68.
    Picard D. Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci. 2002;59(10):1640–1648.CrossRefPubMedGoogle Scholar
  69. 69.
    Caplan AJ, Jackson S, Smith D. Hsp90 reaches new heights. Conference on the Hsp90 chaperone machine. EMBO Rep. 2003;4(2):126–130.CrossRefPubMedGoogle Scholar
  70. 70.
    Stoeckli M, Chaurand P, Hallahan DE, Caprioli RM. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Med. 2001;7(4):493–496.CrossRefPubMedGoogle Scholar
  71. 71.
    Anderson L, Hunter CL. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics. 2006;5(4):573–588.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Megan S. Lim
    • 1
  • Rodney R. Miles
    • 2
  • Kojo S. J. Elenitoba-Johnson
    • 3
  1. 1.Department of PathologyUniversity of Michigan Medical CenterAnn ArborUSA
  2. 2.Department of PathologyUniversity of UtahSalt Lake CityUSA
  3. 3.Department of PathologyUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations