Gene Expression Profiling

  • Cherie H. Dunphy
Part of the Molecular Pathology Library book series (MPLB, volume 4)


Gene expression (GE) analyses by use of microarrays (MAs) have become an important part of biomedical and clinical research and the resulting data may provide important information regarding pathogenesis and be extrapolated for use in diagnosing/prognosticating lymphomas and leukemias. This chapter will first review the various techniques used in gene expression profiling (GEP), and then present the pertinent practical applications of the data acquired by GEP in diagnostic hematopathology, as summarized in various tables, referenced throughout the text.


Chronic Lymphocytic Leukemia Mantle Cell Lymphoma Anaplastic Large Cell Lymphoma ZAP70 Expression Chronic Lymphocytic Leukemia Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Haferlach T, Kohlmann A, Kern W, Hiddemann W, Schnittger S, Schoch C. Gene expression profiling as a tool for the diagnosis of acute leukemias. Semin Hematol. 2003;40:281–295CrossRefPubMedGoogle Scholar
  2. 2.
    Willman CL. Discovery of novel molecular classification schemes and genespredictive of outcome in leukemia. Hematol J. 2004;5:S138–S143.CrossRefPubMedGoogle Scholar
  3. 3.
    Dales JP, Plumas J, Palmerini F, et al. Correlation between apoptosismacroarray gene expression profiling and histopathological lymph nodelesions. J Clin Pathol: Mol Pathol. 2001;54:17–23.CrossRefGoogle Scholar
  4. 4.
    Staal FJT, van der Burg M, Wessels LFA, et al. DNA microarrays forcomparison of gene expression profiles between diagnosis and relapse in precursor-B acute lymphoblastic leukemia: choice of technique and purification influence the identification of potential diagnostic markers. Leukemia. 2003;17:1324–1332CrossRefPubMedGoogle Scholar
  5. 5.
    Damle RN, Wasil T, Fais F, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999;94:1840–1847.PubMedGoogle Scholar
  6. 6.
    Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94:1848–1854.PubMedGoogle Scholar
  7. 7.
    Oscier DG, Gardiner AC, Mould SJ, et al. Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors. Blood. 2002;100:1177–1184.PubMedGoogle Scholar
  8. 8.
    Tchirkov A, Chaleteix C, Magmac C, et al. hTERT expression and prognosis in B-chronic lymphocytic leukemia. Ann Oncol. 2004;15:1476–1480.CrossRefPubMedGoogle Scholar
  9. 9.
    Staudt LM. Gene expression profiling. Ann Rev Med. 2002;53:303–318.CrossRefPubMedGoogle Scholar
  10. 10.
    Rosenwald A, Alizadeh AA, Widhopf G, et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med. 2001;194:1639–1647.CrossRefPubMedGoogle Scholar
  11. 11.
    Orchard JA, Ibbotson RE, Davis Z. ZAP-70 expression and prognosis in chronic lymphocytic leukaemia. The Lancet. 2004;363:105–111.CrossRefGoogle Scholar
  12. 12.
    Ferrer A, Ollila J, Tobin G, et al. Different gene expression in immuoglobulin-mutated and immunoglobulin-unmutated forms of chronic lymphocytic leukemia. Cancer Genet Cytogenet. 2004;153:69–72.CrossRefPubMedGoogle Scholar
  13. 13.
    Weistner A, Rosenwald A, Barry TS, et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profiles. Blood. 2003;101:4944–4951.CrossRefGoogle Scholar
  14. 14.
    Crespo M, Bosch F, Villamor N, et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. NEJM. 2003;348:1764–1775.CrossRefPubMedGoogle Scholar
  15. 15.
    Rosenberg CL, Motokura T, Kronenberg HM, Arnold A. Coding sequence of the overexpressed transcript of the putative oncogene PRAD1/cyclin D1 in two primary human tumors. Oncogene. 1993;8:519–521.PubMedGoogle Scholar
  16. 16.
    Pan Z, Shen Y, Du C, et al. Two newly characterized germinal center B-cell-associated genes, GCET1 and GCET2, have differential expression in normal and neoplastic B cells. Am J Pathol. 2003;163:135–144.PubMedGoogle Scholar
  17. 17.
    Rosenwald A, Wright G, Wiestner A, et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell. 2003;3:185–197.CrossRefPubMedGoogle Scholar
  18. 18.
    Basso K, Liso A, Tiacci E, et al. Gene expression profiling of hairy cell leukemia reveals a phenotype related to memory B cells with altered expression of chemokine and adhesion receptors. J Exp Med. 2004;199:59–68.CrossRefPubMedGoogle Scholar
  19. 19.
    Falini B, Tiacci E, Liso A, et al. Simple diagnostic assay for hairy cell leukaemia by immunocytochemical detection of annexin 1 (ANXA1). The Lancet. 2004;363:1869–1870.CrossRefGoogle Scholar
  20. 20.
    Glas AM, Kersten J, Delahaye LJMJ, et al. Gene expression profiling in follicular lymphoma to assess clinical aggressiveness and to guide the choice of treatment. Blood. 2005;105:301–307.CrossRefPubMedGoogle Scholar
  21. 21.
    Dave SS, Wright G, Tan B, et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. NEJM. 2004;351:2159–2169.CrossRefPubMedGoogle Scholar
  22. 22.
    Farinha P, Masoudi H, Skinnider BF, et al. Analysis of multiple biomarkers shows that lymphoma-associated macrophage (LAM) content is an independent predictor of survival in follicular lymphoma (FL). Blood. 2005 (Pubmedline: prepublication)Google Scholar
  23. 23.
    Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503–511.CrossRefPubMedGoogle Scholar
  24. 24.
    Chang C-C, McClintock S, Cleveland RP, et al. Immunohistochemical expression patterns of germinal center and activation B-cell markers correlate with prognosis in diffuse large B-cell lymphoma. Am J Surg Pathol. 2004;28(4):464–470.PubMedGoogle Scholar
  25. 25.
    Iqbal J, Sanger WG, Horsman DE, et al. Bc12 translocation defines a unique tumor subset within the germinal center B-cell-like diffuse large B-cell lymphoma. Am J Pathol. 2004;165(1):159–166.PubMedGoogle Scholar
  26. 26.
    Browne P, Petrosyan K, Hernandez A, Chan JA. The B-cell transcription factors BSAP, Oct-2, and BOB.1 and the pan-B-cell markers CD20, CD22, and CD79a are useful in the differential diagnosis of classic Hodgkin lymphoma. AJCP. 2003;120:767–777PubMedGoogle Scholar
  27. 27.
    Garcia-Cosio M, Santon A, Martin P, et al. Analysis of transcription factor OCT.1, OCT.2 and BOB.1 expression using tissue arrays in classical Hodgkin’s lymphoma. Mod Pathol. 2004;17:1531–1538.CrossRefPubMedGoogle Scholar
  28. 28.
    Yeoh EJ, Ross ME, Shurtleff SA, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell. 2002;1:133–143.CrossRefPubMedGoogle Scholar
  29. 29.
    Ross ME, Zhou X, Song G, et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood. 2003;102:2951–2959.CrossRefPubMedGoogle Scholar
  30. 30.
    Ferrando AA, Neuberg DS, Staunton JE, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell. 2002;1:75–87.CrossRefPubMedGoogle Scholar
  31. 31.
    Ferrando AA, Look AT. Gene expression profiling in T-cell acute lymphoblastic leukemia. Semin Hematol. 2003;40(4):274–280.CrossRefPubMedGoogle Scholar
  32. 32.
    Schoch C, Kohlmann A, Schnittger S, et al. Acute myeloid leukemias with reciprocal rearrangements can be distinguished by specific gene expression profiles. Proc Natl Acad Sci USA. 2002;99:10008–10013.CrossRefPubMedGoogle Scholar
  33. 33.
    Kohlmann A, Dugas M, Shoch C, et al. Gene expression profiles of distinct AML subtypes in comparison to normal bone marrow. Blood. 2001;98:91a (Supplement 1, abstract)Google Scholar
  34. 34.
    Haferlach T, Kohlmann A, Dugas M, et al. The diagnosis of 14 specific subtypes of leukemia is possible based on gene expression profiles: a study on 263 patients with AML, CML, or CLL. Program and Abstracts of the 44th (2002) Annual Meeting of the American Society of Hematology (Abstract 523)Google Scholar
  35. 35.
    Schoch C, Kern W, Kohlmann A, et al. Acute myeloid leukemia with a complex aberrant karyotype is a distinct biological entity characterized by genomic imbalances and a specific gene expression profile. Genes Chromosomes Cancer. 2005;43:227–238.CrossRefPubMedGoogle Scholar
  36. 36.
    Debernardi S, Lillington DM, Chaplin T, et al. Genome-wide analysis of acute myeloid leukemia with normal karyotype reveals a unique pattern of homeobox gene expression distinct from those with translocation-mediated fusion events. Genes Chromosomes Cancer. 2003;37:149–158.CrossRefPubMedGoogle Scholar
  37. 37.
    Valk PJ, Verhaak RG, Beijen MA, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med. 2004;350:1617–1628.CrossRefPubMedGoogle Scholar
  38. 38.
    Bullinger L, Dohner K, Bair E, et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med. 2004;350:1605–1616.CrossRefPubMedGoogle Scholar
  39. 39.
    Ross ME, Mahfouz R, Onciu M, et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood. 2004;104:3679–3687.CrossRefPubMedGoogle Scholar
  40. 40.
    Nakao M, Yokota S, Iwai T, et al. Internal tandem duplication of the FLT3 gene found in acute myeloid leukemia. Leukemia. 1996;10:1911–1918.PubMedGoogle Scholar
  41. 41.
    Gililand DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100:1532–1542.CrossRefGoogle Scholar
  42. 42.
    Levis M, Small D. FLT3: ITDoes matter in leukemia. Leukemia. 2003;17:1738–1752.CrossRefPubMedGoogle Scholar
  43. 43.
    Schnittger S, Schoch C, Dugas M, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood. 2002;100:59–66.CrossRefPubMedGoogle Scholar
  44. 44.
    Lacayo NJ, Meshinchi S, Kinnunen P, et al. Gene expression profiles at diagnosis in de novo childhood AML patients identify FLT3 mutations with good clinical outcomes. Blood. 2004;104:2646–2654.CrossRefPubMedGoogle Scholar
  45. 45.
    Schnittger S, Kohlmann A, Haferlach T, et al. Acute myeloid leukemia (AML) with partial tandem duplication of the MLL-gene (MLL-PTD) can be discriminated from MLL-translocations based on specific gene expression profiles. Blood. 2002;100:312a (Supplement 1, abstract)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Cherie H. Dunphy
    • 1
  1. 1.Department of Pathology and Laboratory MedicineUniversity of North CarolinaChapel HillUSA

Personalised recommendations