Molecular Techniques to Detect Disease and Response to Therapy: Minimal Residual Disease

  • Marie E. Beckner
  • Jeffrey A. Kant
Part of the Molecular Pathology Library book series (MPLB, volume 4)


Evaluation for the presence of neoplastic cells or karyotypic abnormalities has traditionally been performed to monitor therapeutic response of hematolymphoid neoplasms. The application of multicolor flow cytometry and nucleic acid amplification techniques has extended evaluable markers and lowered limits of detection, thus leading to the term “minimal residual disease” (MRD). The ability to monitor MRD has, in turn, led to new concepts in the definition of disease “remission” and early relapse and opportunities for personalized therapy. This chapter focuses on the principles of the molecular assessment of MRD.


Acute Myeloid Leukemia Minimal Residual Disease Fusion Transcript Acute Myeloid Leukemia Case Nucleic Acid Amplification Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Clarkson B, Strife A, Perez A, Lambek C, Wisniewski D. Integration of molecular and biological abnormalities in quest for selective treatment of chronic myelogenous leukemia (CML). Leuk Lymphoma. 1993;11(suppl 2):81–100.PubMedCrossRefGoogle Scholar
  2. 2.
    Lowenberg B. Minimal residual disease in chronic myeloid leukemia. N Engl J Med. 2003;349(15):1399–1401.PubMedCrossRefGoogle Scholar
  3. 3.
    Yin JA, Grimwade D. Minimal residual disease evaluation in acute myeloid leukaemia. Lancet. 2002;360(9327):160–162.PubMedCrossRefGoogle Scholar
  4. 4.
    Hughes TP, Kaeda J, Branford S, et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med. 2003;349(15):1423–1432.PubMedCrossRefGoogle Scholar
  5. 5.
    van der Velden VH, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJ. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia. 2003;17(6):1013–1034.PubMedCrossRefGoogle Scholar
  6. 6.
    Cazzaniga G, Gaipa G, Rossi V, Biondi A. Monitoring of minimal residual disease in leukemia, advantages and pitfalls. Ann Med. 2006;38(7):512–521.PubMedCrossRefGoogle Scholar
  7. 7.
    Pongers-Willemse MJ, Seriu T, Stolz F, et al. Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13(1):110–118.PubMedCrossRefGoogle Scholar
  8. 8.
    Szczepanski T. Why and how to quantify minimal residual disease in acute lymphoblastic leukemia? Leukemia. 2007;21(4):622–626.PubMedGoogle Scholar
  9. 9.
    Szczepanski T, Willemse MJ, Brinkhof B, van Wering ER, van der Burg M, van Dongen JJ. Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood. 2002;99(7):2315–2323.PubMedCrossRefGoogle Scholar
  10. 10.
    Tarusawa M, Yashima A, Endo M, Maesawa C. Quantitative assessment of minimal residual disease in childhood lymphoid malignancies using an allele-specific oligonucleotide real-time quantitative polymerase chain reaction. Int J Hematol. 2002;75(2):166–173.PubMedCrossRefGoogle Scholar
  11. 11.
    Flohr T, Schrauder A, Cazzaniga G, et al. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia. 2008;22(4):771–782.PubMedCrossRefGoogle Scholar
  12. 12.
    Gonzalez D, Garcia-Sanz R. Incomplete DJH rearrangements. Methods Mol Med. 2005;113:165–173.PubMedGoogle Scholar
  13. 13.
    Sarasquete ME, Garcia-Sanz R, Gonzalez D, et al. Minimal residual disease monitoring in multiple myeloma: a comparison between allelic-specific oligonucleotide real-time quantitative polymerase chain reaction and flow cytometry. Haematologica. 2005;90(10):1365–1372.PubMedGoogle Scholar
  14. 14.
    Yee HT, Ponzoni M, Merson A, et al. Molecular characterization of the t(2;5) (p23; q35) translocation in anaplastic large cell lymphoma (Ki-1) and Hodgkin’s disease. Blood. 1996;87(3):1081–1088.PubMedGoogle Scholar
  15. 15.
    van Dongen JJ, Macintyre EA, Gabert JA, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13(12):1901–1928.PubMedCrossRefGoogle Scholar
  16. 16.
    Branford S, Cross NC, Hochhaus A, et al. Rationale for the recommendations for harmonizing current methodology for detecting BCR-ABL transcripts in patients with chronic myeloid leukaemia. Leukemia. 2006;20(11):1925–1930.PubMedCrossRefGoogle Scholar
  17. 17.
    Kern W, Haferlach C, Haferlach T, Schnittger S. Monitoring of minimal residual disease in acute myeloid leukemia. Cancer. 2008;112(1):4–16.PubMedCrossRefGoogle Scholar
  18. 18.
    van den Velden PA, Reitsma PH. Amino acid dimorphism in IL1A is detectable by PCR amplification. Hum Mol Genet. 1993;2(10):1753.PubMedCrossRefGoogle Scholar
  19. 19.
    Knudson RA, Shearer BM, Ketterling RP. Automated Duet spot counting system and manual technologist scoring using dual-fusion fluorescence in situ hybridization (D-FISH) strategy: comparison and application to FISH minimal residual disease testing in patients with chronic myeloid leukemia. Cancer Genet Cytogenet. 2007;175(1):8–18.PubMedCrossRefGoogle Scholar
  20. 20.
    Hughes T, Deininger M, Hochhaus A, et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006;108(1):28–37.PubMedCrossRefGoogle Scholar
  21. 21.
    Kim YJ, Kim DW, Lee S, et al. Comprehensive comparison of FISH, RT-PCR, and RQ-PCR for monitoring the BCR-ABL gene after hematopoietic stem cell transplantation in CML. Eur J Haematol. 2002;68(5):272–280.PubMedCrossRefGoogle Scholar
  22. 22.
    Tbakhi A, Pettay J, Sreenan JJ, et al. Comparative analysis of interphase FISH and RT-PCR to detect bcr-abl translocation in chronic myelogenous leukemia and related disorders. Am J Clin Pathol. 1998;109(1):16–23.PubMedGoogle Scholar
  23. 23.
    Bacher U, Kern W, Schoch C, Schnittger S, Hiddemann W, Haferlach T. Evaluation of complete disease remission in acute myeloid leukemia: a prospective study based on cytomorphology, interphase fluorescence in situ hybridization, and immunophenotyping during follow-up in patients with acute myeloid leukemia. Cancer. 2006;106(4):839–847.PubMedCrossRefGoogle Scholar
  24. 24.
    Buccisano F, Maurillo L, Gattei V, et al. The kinetics of reduction of minimal residual disease impacts on duration of response and survival of patients with acute myeloid leukemia. Leukemia. 2006;20(10):1783–1789.PubMedCrossRefGoogle Scholar
  25. 25.
    Kern W, Schnittger S. Monitoring of acute myeloid leukemia by flow cytometry. Curr Oncol Rep. 2003;5(5):405–412.PubMedCrossRefGoogle Scholar
  26. 26.
    Sayala HA, Rawstron AC, Hillmen P. Minimal residual disease assessment in chronic lymphocytic leukaemia. Best Pract Res Clin Haematol. 2007;20(3):499–512.PubMedCrossRefGoogle Scholar
  27. 27.
    Rawstron AC, Kennedy B, Evans PA, et al. Quantitation of minimal disease levels in chronic lymphocytic leukemia using a sensitive flow cytometric assay improves the prediction of outcome and can be used to optimize therapy. Blood. 2001;98(1):29–35.PubMedCrossRefGoogle Scholar
  28. 28.
    Willenbrock H, Juncker AS, Schmiegelow K, Knudsen S, Ryder LP. Prediction of immunophenotype, treatment response, and relapse in childhood acute lymphoblastic leukemia using DNA microarrays. Leukemia. 2004;18(7):1270–1277.PubMedCrossRefGoogle Scholar
  29. 29.
    Staal FJ, van der Burg M, Wessels LF, et al. DNA microarrays for comparison of gene expression profiles between diagnosis and relapse in precursor-B acute lymphoblastic leukemia: choice of technique and purification influence the identification of potential diagnostic markers. Leukemia. 2003;17(7):1324–1332.PubMedCrossRefGoogle Scholar
  30. 30.
    Langabeer SE, Gale RE, Harvey RC, Cook RW, Mackinnon S, Linch DC. Transcription-mediated amplification and hybridisation protection assay to determine BCR-ABL transcript levels in patients with chronic myeloid leukaemia. Leukemia. 2002;16(3):393–399.PubMedCrossRefGoogle Scholar
  31. 31.
    Hughes TP, Morgan GJ, Martiat P, Goldman JM. Detection of residual leukemia after bone marrow transplant for chronic myeloid leukemia: role of polymerase chain reaction in predicting relapse. Blood. 1991;77(4):874–878.PubMedGoogle Scholar
  32. 32.
    Kawasaki ES, Clark SS, Coyne MY, et al. Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified in vitro. Proc Natl Acad Sci USA. 1988;85(15):5698–5702.PubMedCrossRefGoogle Scholar
  33. 33.
    Morgan GJ, Hughes T, Janssen JW, et al. Polymerase chain reaction for detection of residual leukaemia. Lancet. 1989;1(8644):928–929.PubMedCrossRefGoogle Scholar
  34. 34.
    Cross NC, Feng L, Chase A, Bungey J, Hughes TP, Goldman JM. Competitive polymerase chain reaction to estimate the number of BCR-ABL transcripts in chronic myeloid leukemia patients after bone marrow transplantation. Blood. 1993;82(6):1929–1936.PubMedGoogle Scholar
  35. 35.
    Hochhaus A, Lin F, Reiter A, et al. Quantification of residual disease in chronic myelogenous leukemia patients on interferon-alpha therapy by competitive polymerase chain reaction. Blood. 1996;87(4):1549–1555.PubMedGoogle Scholar
  36. 36.
    Martinelli G, Iacobucci I, Soverini S, et al. Monitoring minimal residual disease and controlling drug resistance in chronic myeloid leukaemia patients in treatment with imatinib as a guide to clinical management. Hematol Oncol. 2006;24(4):196–204.PubMedCrossRefGoogle Scholar
  37. 37.
    Pongers-Willemse MJ, Verhagen OJ, Tibbe GJ, et al. Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia. 1998;12(12):2006–2014.PubMedCrossRefGoogle Scholar
  38. 38.
    Gabert J, Beillard E, van der Velden VH, et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – a Europe Against Cancer program. Leukemia. 2003;17(12):2318–2357.PubMedCrossRefGoogle Scholar
  39. 39.
    Cassinat B, Zassadowski F, Balitrand N, et al. Quantitation of minimal residual disease in acute promyelocytic leukemia patients with t(15;17) translocation using real-time RT-PCR. Leukemia. 2000;14(2):324–328.PubMedCrossRefGoogle Scholar
  40. 40.
    Visani G, Buonamici S, Malagola M, et al. Pulsed ATRA as single therapy restores long-term remission in PML-RARalpha-positive acute promyelocytic leukemia patients: real time quantification of minimal residual disease. A pilot study. Leukemia. 2001;15(11):1696–1700.PubMedGoogle Scholar
  41. 41.
    Branford S, Hughes TP, Rudzki Z. Monitoring chronic myeloid leukaemia therapy by real-time quantitative PCR in blood is a reliable alternative to bone marrow cytogenetics. Br J Haematol. 1999;107(3):587–599.PubMedCrossRefGoogle Scholar
  42. 42.
    Emig M, Saussele S, Wittor H, et al. Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR. Leukemia. 1999;13(11):1825–1832.PubMedCrossRefGoogle Scholar
  43. 43.
    Kaeda J, Chase A, Goldman JM. Cytogenetic and molecular monitoring of residual disease in chronic myeloid leukaemia. Acta Haematol. 2002;107(2):64–75.PubMedCrossRefGoogle Scholar
  44. 44.
    Preudhomme C, Revillion F, Merlat A, et al. Detection of BCR-ABL transcripts in chronic myeloid leukemia (CML) using a ‘real time’ quantitative RT-PCR assay. Leukemia. 1999;13(6):957–964.PubMedCrossRefGoogle Scholar
  45. 45.
    Wang L, Pearson K, Pillitteri L, Ferguson JE, Clark RE. Serial monitoring of BCR-ABL by peripheral blood real-time polymerase chain reaction predicts the marrow cytogenetic response to imatinib mesylate in chronic myeloid leukaemia. Br J Haematol. 2002;118(3):771–777.PubMedCrossRefGoogle Scholar
  46. 46.
    Mensink E, van de Locht A, Schattenberg A, et al. Quantitation of minimal residual disease in Philadelphia chromosome positive chronic myeloid leukaemia patients using real-time quantitative RT-PCR. Br J Haematol. 1998;102(3):768–774.PubMedCrossRefGoogle Scholar
  47. 47.
    Cortes J, Talpaz M, O’Brien S, et al. Molecular responses in patients with chronic myelogenous leukemia in chronic phase treated with imatinib mesylate. Clin Cancer Res. 2005;11(9):3425–3432.PubMedCrossRefGoogle Scholar
  48. 48.
    Paschka P, Muller MC, Merx K, et al. Molecular monitoring of response to imatinib (Glivec) in CML patients pretreated with interferon alpha. Low levels of residual disease are associated with continuous remission. Leukemia. 2003;17(9):1687–1694.PubMedCrossRefGoogle Scholar
  49. 49.
    Press RD, Love Z, Tronnes AA, et al. BCR-ABL mRNA levels at and after the time of a complete cytogenetic response (CCR) predict the duration of CCR in imatinib mesylate-treated patients with CML. Blood. 2006;107(11):4250–4256.PubMedCrossRefGoogle Scholar
  50. 50.
    Muller MC, Gattermann N, Lahaye T, et al. Dynamics of BCR-ABL mRNA expression in first-line therapy of chronic myelogenous leukemia patients with imatinib or interferon alpha/ara-C. Leukemia. 2003;17(12):2392–2400.PubMedCrossRefGoogle Scholar
  51. 51.
    Takenokuchi M, Yasuda C, Takeuchi K, et al. Quantitative nested reverse transcriptase PCR vs. real-time PCR for measuring AML1/ETO (MTG8) transcripts. Clin Lab Haematol. 2004;26(2):107–114.PubMedCrossRefGoogle Scholar
  52. 52.
    Burnett AK, Grimwade D, Solomon E, Wheatley K, Goldstone AH. Presenting white blood cell count and kinetics of molecular remission predict prognosis in acute promyelocytic leukemia treated with all-trans retinoic acid: result of the Randomized MRC Trial. Blood. 1999;93(12):4131–4143.PubMedGoogle Scholar
  53. 53.
    Arlinghaus R, Lin H, Guo JQ, Kim H-W, Ke S. Reply to Rawer et al. (second letter). Leukemia. 2003;17:2530.CrossRefGoogle Scholar
  54. 54.
    Arlinghuas R, Lin H, Kim H-W, Guo JQ. Response to Influence of stochastics on quantitative PCR in the detection of minimal residual disease by Rawer et al. (first response). Leukemia. 2003;17:2528–2529.CrossRefGoogle Scholar
  55. 55.
    Rawer D, Borkhardt A, Wilda M, Kropf S, Kreuder J. Influence of stochastics on quantitative PCR in the detection of minimal residual disease. Leukemia. 2003;17(12):2527–2528. author reply 2528–2531.PubMedCrossRefGoogle Scholar
  56. 56.
    Stock W, Yu D, Karrison T, et al. Quantitative real-time RT-PCR monitoring of BCR-ABL in chronic myelogenous leukemia shows lack of agreement in blood and bone marrow samples. Int J Oncol. 2006;28(5):1099–1103.PubMedGoogle Scholar
  57. 57.
    van der Velden VH, Jacobs DC, Wijkhuijs AJ, et al. Minimal residual disease levels in bone marrow and peripheral blood are comparable in children with T cell acute lymphoblastic leukemia (ALL), but not in precursor-B-ALL. Leukemia. 2002;16(8):1432–1436.PubMedCrossRefGoogle Scholar
  58. 58.
    Lane S, Saal R, Mollee P, et al. A >or=1 log rise in RQ-PCR transcript levels defines molecular relapse in core binding factor acute myeloid leukemia and predicts subsequent morphologic relapse. Leuk Lymphoma. 2008;49(3):517–523.PubMedCrossRefGoogle Scholar
  59. 59.
    Morschhauser F, Cayuela JM, Martini S, et al. Evaluation of minimal residual disease using reverse-transcription polymerase chain reaction in t(8;21) acute myeloid leukemia: a multicenter study of 51 patients. J Clin Oncol. 2000;18(4):788–794.PubMedGoogle Scholar
  60. 60.
    Stentoft J, Hokland P, Ostergaard M, Hasle H, Nyvold CG. Minimal residual core binding factor AMLs by real time quantitative PCR – initial response to chemotherapy predicts event free survival and close monitoring of peripheral blood unravels the kinetics of relapse. Leuk Res. 2006;30(4):389–395.PubMedCrossRefGoogle Scholar
  61. 61.
    Bustin SA, Nolan T. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J Biomol Tech. 2004;15(3):155–166.PubMedGoogle Scholar
  62. 62.
    Kim YJ, Kim DW, Lee S, et al. Early prediction of molecular remission by monitoring BCR-ABL transcript levels in patients achieving a complete cytogenetic response after imatinib therapy for posttransplantation chronic myelogenous leukemia relapse. Biol Blood Marrow Transplant. 2004;10(10):718–725.PubMedCrossRefGoogle Scholar
  63. 63.
    Guo JQ, Lin H, Kantarjian H, et al. Comparison of competitive-nested PCR and real-time PCR in detecting BCR-ABL fusion transcripts in chronic myeloid leukemia patients. Leukemia. 2002;16(12):2447–2453.PubMedCrossRefGoogle Scholar
  64. 64.
    Stahlberg A, Kubista M, Pfaffl M. Comparison of reverse transcriptases in gene expression analysis. Clin Chem. 2004;50(9):1678–1680.PubMedCrossRefGoogle Scholar
  65. 65.
    Beillard E, Pallisgaard N, van der Velden VH, et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’ quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) – a Europe against cancer program. Leukemia. 2003;17(12):2474–2486.PubMedCrossRefGoogle Scholar
  66. 66.
    Ginzinger DG. Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol. 2002;30(6):503–512.PubMedCrossRefGoogle Scholar
  67. 67.
    Silvy M, Mancini J, Thirion X, Sigaux F, Gabert J. Evaluation of real-time quantitative PCR machines for the monitoring of fusion gene transcripts using the Europe against cancer protocol. Leukemia. 2005;19(2):305–307.PubMedCrossRefGoogle Scholar
  68. 68.
    Lee JW, Chen Q, Knowles DM, Cesarman E, Wang YL. beta-Glucuronidase is an optimal normalization control gene for molecular monitoring of chronic myelogenous leukemia. J Mol Diagn. 2006;8(3):385–389.PubMedCrossRefGoogle Scholar
  69. 69.
    Wang YL, Lee JW, Cesarman E, Jin DK, Csernus B. Molecular monitoring of chronic myelogenous leukemia: identification of the most suitable internal control gene for real-time quantification of BCR-ABL transcripts. J Mol Diagn. 2006;8(2):231–239.PubMedCrossRefGoogle Scholar
  70. 70.
    Wong ML, Medrano JF. Real-time PCR for mRNA quantitation. Biotechniques. 2005;39(1):75–85.PubMedCrossRefGoogle Scholar
  71. 71.
    Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res. 1996;6(10):986–994.PubMedCrossRefGoogle Scholar
  72. 72.
    Zhang T, Grenier S, Nwachukwu B, Wei C, Lipton JH, Kamel-Reid S. Inter-laboratory comparison of chronic myeloid leukemia minimal residual disease monitoring: summary and recommendations. J Mol Diagn. 2007;9(4):421–430.PubMedCrossRefGoogle Scholar
  73. 73.
    AppliedBioSystems, User Bulletin #2. ABI Prism 7700 Sequence Detection System, 2001.version 2 (original 1997):1–36.Google Scholar
  74. 74.
    Ji W, Qu GZ, Ye P, Zhang XY, Halabi S, Ehrlich M. Frequent detection of bcl-2/JH translocations in human blood and organ samples by a quantitative polymerase chain reaction assay. Cancer Res. 1995;55(13):2876–2882.PubMedGoogle Scholar
  75. 75.
    Limpens J, Stad R, Vos C, et al. Lymphoma-associated translocation t(14;18) in blood B cells of normal individuals. Blood. 1995;85(9):2528–2536.PubMedGoogle Scholar
  76. 76.
    Bose S, Deininger M, Gora-Tybor J, Goldman JM, Melo JV. The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood. 1998;92(9):3362–3367.PubMedGoogle Scholar
  77. 77.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408.PubMedCrossRefGoogle Scholar
  78. 78.
    Branford S, Fletcher L, Cross NC, et al. Desirable performance characteristics for BCR-ABL measurement on an international reporting scale to allow consistent interpretation of individual patient response and comparison of response rates between clinical trials. Blood. 2008;112(8):3330–3338.PubMedCrossRefGoogle Scholar
  79. 79.
    Amabile M, Giannini B, Testoni N, et al. Real-time quantification of different types of bcr-abl transcript in chronic myeloid leukemia. Haematologica. 2001;86(3):252–259.PubMedGoogle Scholar
  80. 80.
    Merx K, Muller MC, Kreil S, et al. Early reduction of BCR-ABL mRNA transcript levels predicts cytogenetic response in chronic phase CML patients treated with imatinib after failure of interferon alpha. Leukemia. 2002;16(9):1579–1583.PubMedCrossRefGoogle Scholar
  81. 81.
    Otazu IB, Tavares Rde C, Hassan R, Zalcberg I, Tabak DG, Seuanez HN. Estimations of BCR-ABL/ABL transcripts by quantitative PCR in chronic myeloid leukaemia after allogeneic bone marrow transplantation and donor lymphocyte infusion. Leuk Res. 2002;26(2):129–141.PubMedCrossRefGoogle Scholar
  82. 82.
    Branford S, Rudzki Z, Harper A, et al. Imatinib produces significantly superior molecular responses compared to interferon alfa plus cytarabine in patients with newly diagnosed chronic myeloid leukemia in chronic phase. Leukemia. 2003;17(12):2401–2409.PubMedCrossRefGoogle Scholar
  83. 83.
    Aerts JL, Gonzales MI, Topalian SL. Selection of appropriate control genes to assess expression of tumor antigens using real-time RT-PCR. Biotechniques. 2004;36(1):84–86. 88, 90–81.PubMedGoogle Scholar
  84. 84.
    van der Velden VH, Joosten SA, Willemse MJ, et al. Real-time quantitative PCR for detection of minimal residual disease before allogeneic stem cell transplantation predicts outcome in children with acute lymphoblastic leukemia. Leukemia. 2001;15(9):1485–1487.PubMedCrossRefGoogle Scholar
  85. 85.
    van der Velden VH, Wijkhuijs JM, Jacobs DC, van Wering ER, van Dongen JJ. T cell receptor gamma gene rearrangements as targets for detection of minimal residual disease in acute lymphoblastic leukemia by real-time quantitative PCR analysis. Leukemia. 2002;16(7):1372–1380.PubMedCrossRefGoogle Scholar
  86. 86.
    Mandigers CM, Meijerink JP, Mensink EJ, et al. Lack of correlation between numbers of circulating t(14;18)-positive cells and response to first-line treatment in follicular lymphoma. Blood. 2001;98(4):940–944.PubMedCrossRefGoogle Scholar
  87. 87.
    Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):RESEARCH0034.PubMedCrossRefGoogle Scholar
  88. 88.
    Bolufer P, Sanz GF, Barragan E, et al. Rapid quantitative detection of BCR-ABL transcripts in chronic myeloid leukemia patients by real-time reverse transcriptase polymerase-chain reaction using fluorescently labeled probes. Haematologica. 2000;85(12):1248–1254.PubMedGoogle Scholar
  89. 89.
    Eder M, Battmer K, Kafert S, Stucki A, Ganser A, Hertenstein B. Monitoring of BCR-ABL expression using real-time RT-PCR in CML after bone marrow or peripheral blood stem cell transplantation. Leukemia. 1999;13(9):1383–1389.PubMedCrossRefGoogle Scholar
  90. 90.
    Ma W, Tseng R, Gorre M, et al. Plasma RNA as an alternative to cells for monitoring molecular response in patients with chronic myeloid leukemia. Haematologica. 2007;92(2):170–175.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Marie E. Beckner
    • 1
  • Jeffrey A. Kant
    • 2
  1. 1.Molecular Diagnostics, Department of PathologyUniversity of PittsburghPittsburghUSA
  2. 2.Division of Molecular Diagnostics, Department of Pathology and Human GeneticsUniversity of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations