Advertisement

On Natural Boundary Conditions in Linear 2nd-Grade Elasticity

  • Francesco Froiio
  • A. Zervos
  • Ioannis Vardoulakis
Chapter
Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 21)

Abstract

This work aims at drawing the attention of mechanicians interested in the development of extended continuum theories on the unresolved issue of the physical interpretation of the additional boundary conditions introduced by 2nd-grade models. We discuss this issue in the context of the linearized theory of elasticity as an appropriate platform for discussion. Apart from lineal densities of edge-forces, 2nd-grade models allow for the prescription of force-like quantities energy-conjugated to the gradient of the velocity field on the boundary. Previous works proposed reductionistic interpretations, treating 2nd-grade models as particular cases of continua with affine microstructure; from the latter one can deduce field equations reminiscent of 2nd-grade models, either in the “low-frequency, medium wavelength” limit or by constraining the microstructural degrees of freedom to the gradient of the velocity field. The interpretation we propose here is based on the concept of ortho-fiber, and has the merit of achieving a simple physical interpretation of the boundary conditions without recourse to extensive algebra or the need to invoke microstructure.

Keywords

Natural Boundary Condition Internal Length Additional Boundary Condition Store Energy Density Extensive Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bluenstein, J.L.: A note on boundary conditions of Toupin’s second gradient theory. Int. J. Solids Stuct. 3, 1053–1057 (1967) CrossRefGoogle Scholar
  2. 2.
    Degiovanni, M., Marzocchi, A., Musesti, A.: Edge-forces and second-order powers. Ann. Math. Pura Appl. 185, 81–103 (2006) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Fried, E., Gurtin, M.: Traction, balances and boundary conditions for nonsimple materials with applications to liquid at small length-scales. Arch. Ration. Mech. Anal. 182, 513–554 (2006) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Froiio, F., Zervos, A., Vardoulakis, I.: Linear 2nd-grade elasticity. J. Elast. (2009, submitted) Google Scholar
  5. 5.
    Germain, P.: La méthode de puissances virtuelles en mécanique des milieux continus. Première partie: théorie du second gradient. J. Méc. 12, 235–274 (1973) MATHMathSciNetGoogle Scholar
  6. 6.
    Germain, P.: La méthode de puissances virtuelles en mécanique des milieux continus. Première partie: théorie du second gradient. J. Méc. 25, 556–575 (1973) MATHMathSciNetGoogle Scholar
  7. 7.
    Germain, P.: The method of virtual power in continuum mechanics. Part 2: Microstructure. SIAM J. Appl. Math. 25, 556–575 (1973) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Green, A.E., Rivlin, R.: On Cauchy equation of motion. Z. Angew. Math. Phys. 15, 290–292 (1964) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Mindlin, R.D.: Microstructre in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1995) MathSciNetGoogle Scholar
  10. 10.
    Mindlin, R.D.: Second gradient of strain and surface tension in linear elasticity. Int. J. Solids Stuct. 1, 417–438 (1964) CrossRefGoogle Scholar
  11. 11.
    Mindlin, R.D., Eshel, N.N.: On first strain-gradient theory in linear elasticity. Int. J. Solids Stuct. 4, 109–124 (1968) MATHCrossRefGoogle Scholar
  12. 12.
    Noll, W.: La mécanique classique, basée sur un axiome d’objectivité. In: Actes Quatrième Colloq. Internat. de Logique et Philos. Sci., Paris (1959), pp. 47–56. Gauthier-Villars, Paris (1963) Google Scholar
  13. 13.
    Podio-Guidugli, P.: Inertia and invariance. Ann. Mat. Pura Appl. 172, 103–124 (1997) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Spencer, A.J.M.: Isotropic polynomial invariants and tensor functions. In: Boheler, J.P. (ed.) Application of Tensor Functions in Continuum Mechanics. CISM Courses and Lectures, vol. 292. Springer, Berlin (1987) Google Scholar
  15. 15.
    Toupin, R.A.: Elastic material with couple stress. Arch. Ration. Mech. Anal. 11, 385–414 (1962) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Francesco Froiio
    • 1
  • A. Zervos
    • 2
  • Ioannis Vardoulakis
  1. 1.Ecole Centrale de LyonEcullyFrance
  2. 2.University of SouthamptonSouthamptonUK

Personalised recommendations