Advertisement

Waves in Residual-Saturated Porous Media

  • Holger Steeb
  • Marcel Frehner
  • Stefan Schmalholz
Chapter
Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 21)

Abstract

We present a three-phase model describing wave propagation phenomena in residual-saturated porous media. The model consists of a continuous non-wetting phase and a discontinuous wetting phase and is an extension of classical biphasic (Biot-type) models. The model includes resonance effects of single liquid bridges or liquid clusters with miscellaneous eigenfrequencies taking into account a visco-elastic restoring force (pinned oscillations and/or sliding motion of the contact line). For the quasi-static limit case, i.e., ω 0, the results of the model are identical with the phase velocity obtained with the well-known Gassmann–Wood limit.

Keywords

Porous Medium Representative Volume Element Liquid Bridge Saturated Porous Medium Porous Rock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bear, J.: Dynamics of Fluids in Porous Media. Dover, New York (1972) Google Scholar
  2. 2.
    Bedford, A., Stern, M.: A model for wave propagation in gassy sediments. J. Acoust. Soc. Am. 73, 409–417 (1983) zbMATHCrossRefGoogle Scholar
  3. 3.
    Beresnev, I.A.: Theory of vibratory mobilization on nonwetting fluids entrapped in pore constrictions. Geophysics 71, N47–N56 (2006) CrossRefGoogle Scholar
  4. 4.
    Berryman, J.G., Thigpen, L., Chin, R.C.Y.: Bulk elastic wave propagation in partially saturated porous solids. J. Acoust. Soc. Am. 84, 360–373 (1988) CrossRefGoogle Scholar
  5. 5.
    Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Lowfrequency range. J. Acoust. Soc. Am. 29, 168–178 (1956) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Biot, M.A.: Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33, 1482–1498 (1962) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bourbié, T., Coussy, O., Zinszner, B.: Acoustics of Porous Media. Editions Technip, Paris (1987) Google Scholar
  8. 8.
    Brutsaert: The propagation of elastic waves in unconsolidated unsaturated granular mediums. J. Geophys. Res. 69, 243–257 (1964) CrossRefGoogle Scholar
  9. 9.
    Carcione, J.M., Cavallini, F., Santos, J.E., Ravazzoli, C.L., Gauzellino, P.M.: Wave propagation in partially saturated porous media: simulation of a second slow wave. Wave Motion 39, 227–240 (2003) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Chapman, M., Liu, E., Li, X.Y.: The influence of fluid-sensitive dispersion and attenuation on AVO analysis. Geophys. J. Int. 167, 89–105 (2006) CrossRefGoogle Scholar
  11. 11.
    Dutta, N.C., Odé, H.: Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (White model)—Part I: Biot theory, Part II: Results. Geophysics 44, 1777–1805 (1979) CrossRefGoogle Scholar
  12. 12.
    Frehner, M., Schmalholz, S.M., Podladchikov, Y.: Spectral modification of seismic waves propagating through solids exhibiting a resonance frequency: a 1-D coupled wave propagation–oscillation model. Geophys. J. Int. 176, 589–600 (2009) CrossRefGoogle Scholar
  13. 13.
    Frenkel, J.: On the theory of seismic and seismoelectric phenomena in a moist soil. J. Phys. 3, 230–241 (1944) MathSciNetGoogle Scholar
  14. 14.
    Garg, S.K., Nayfeh, A.H.: Compressional wave propagation in liquid and/or gas saturated elastic porous media. J. Appl. Phys. 60, 3045–3055 (1986) CrossRefGoogle Scholar
  15. 15.
    Hilpert, M.: Capillarity-induced resonance of blobs in porous media: Analytical solutions, Lattice–Boltzmann modeling, and blob mobilization. J. Colloid Interface Sci. 309, 493–504 (2007) CrossRefGoogle Scholar
  16. 16.
    Hilpert, M., Jirka, G.H., Plate, E.J.: Capillarity-induced resonance of oil blobs in capillary tubes and porous media. Geophysics 65, 874–883 (2000) CrossRefGoogle Scholar
  17. 17.
    Holzner, R., Eschle, P., Dangel, S., Frehner, M., Narayanan, C., Lakehal, D.: Hydrocarbon microtremors interpreted as nonlinear oscillations driven by oceanic background waves. Commun. Nonlinear Sci. Numer. Simul. 14, 160–173 (2009) CrossRefGoogle Scholar
  18. 18.
    Lo, W.C., Sposito, G.: Wave propagation through elastic porous media containing two immiscible fluids. Water Resour. Res. 41, W02,025 (2005) CrossRefGoogle Scholar
  19. 19.
    Lo, W.C., Sposito, G., Majer, E.: Low-frequency dilatational wave propagation through unsaturated porous media containing two immiscible fluids. Transp. Porous Media 68, 91–105 (2007) CrossRefMathSciNetGoogle Scholar
  20. 20.
    Mavko, G.M., Nur, A.: Wave attenuation in partially saturated rocks. Geophysics 44, 161–178 (1979) CrossRefGoogle Scholar
  21. 21.
    Murphy, W.F.: Effects of water saturation on attenuation of Massilon sandstone and Vycor porous plate. J. Acoust. Soc. Am. 71, 1458–1468 (1982) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Pride, S.R., Berryman, J.G., Harris, J.M.: Seismic attenuation due to wave-induced flow. J. Geophys. Res. 109, B01,201 (2004) Google Scholar
  23. 23.
    Santos, J.E., Corbero, J.M., Douglas, J.: Static and dynamic behavior of a porous solid saturated by a two-phase fluid. J. Acoust. Soc. Am. 87, 1428–1438 (1990) CrossRefMathSciNetGoogle Scholar
  24. 24.
    Santos, J.E., Douglas, J., Corbero, J.M., Love, O.M.: A model for wave propagation in a porous medium saturated by a two-phase fluid. J. Acoust. Soc. Am. 87, 1439–1448 (1990) CrossRefGoogle Scholar
  25. 25.
    Scheidegger, A.E.: The Physics of Flow Through Porous Media. MacMillan, New York (1957) zbMATHGoogle Scholar
  26. 26.
    Smeulders, D.M.J., de la Rosette, J.P.M., Dongen, M.E.H.V.: Waves in partially saturated porous media. Transp. Porous Media 9, 25–37 (1992) CrossRefGoogle Scholar
  27. 27.
    Stoll, R.D.: Sediment Acoustics. Lecture Notes in Earth Sciences. Springer, Berlin (1989) Google Scholar
  28. 28.
    Toms, J., Müller, T.M., Cizc, R., Gurevich, B.: Comparative review of theoretical models for elastic wave attenuation and dispersion in partially saturated rocks. Soil Dyn. Earthq. Eng. 26, 548–565 (2006) CrossRefGoogle Scholar
  29. 29.
    Tuncay, K., Corapcioglu, M.Y.: Body waves in poroelastic media saturated by two immiscible fluids. Geophys. Res. Lett. 101, 25,149-25,159 (1996) Google Scholar
  30. 30.
    Wang, H.F.: Theory of Linear Poroelasticity. Princeton University Press, Princeton (2000) Google Scholar
  31. 31.
    Wei, C., Muraleetharan, K.K.: A continuum theory of porous media saturated by multiple immiscible fluids: I. Linear poroelasticity. Int. J. Eng. Sci. 40, 1807–1833 (2002) CrossRefMathSciNetGoogle Scholar
  32. 32.
    Wei, C., Muraleetharan, K.K.: A continuum theory of porous media saturated by multiple immiscible fluids: II. Lagrangian description and variational structureinear poroelasticity. Int. J. Eng. Sci. 40, 1835–1854 (2002) CrossRefMathSciNetGoogle Scholar
  33. 33.
    White, J.E., Mikhaylova, N.G., Lyakhovitskiy, F.M.: Low-frequency seismic waves in fluid-saturated layered rocks. Earth Phys. 10, 44–52 (1975) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Holger Steeb
    • 1
  • Marcel Frehner
    • 2
  • Stefan Schmalholz
    • 3
  1. 1.Mechanics-Continuum MechanicsRuhr-University BochumBochumGermany
  2. 2.Department of Geodynamics and SedimentologyUniversity of ViennaViennaAustria
  3. 3.Geological InstituteETH ZurichZurichSwitzerland

Personalised recommendations