Reissner–Mindlin Shear Moduli of a Sandwich Panel with Periodic Core Material

  • Arthur Lebée
  • Karam Sab
Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 21)


Cecchi and Sab homogenization method (Cecchi and Sab in Int. J. Solids Struct. 44(18–19):6055–6079, 2007) for the derivation of the effective Reissner–Mindlin shear moduli of a periodic plate is applied to sandwich panels including chevron pattern. Comparison with existing bounds (Lebée and Sab in Int. J. Solids Struct., 2010) and full 3D finite element computation validates the method. Finally, the skins effect on transverse shear stiffness is put forward.


Transverse Shear Sandwich Panel Shear Modulo First Order Shear Deformation Theory Kirchhoff Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basily, B., Elsayed, E.: Dynamic axial crushing of multi-layer core structures of folded chevron patterns. Int. J. Mater. Prod. Technol. 21, 169–185 (2004) CrossRefGoogle Scholar
  2. 2.
    Caillerie, D.: Thin elastic and periodic plates. Math. Methods Appl. Sci. 6(2), 159–191 (1984) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Carrera, E.: Theories and finite elements for multilayered, anisotropic, composite plates and shells, Arch. Comput. Methods Eng. 9(2), 87–140 (2002) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cecchi, A., Sab, K.: A homogenized Reissner–Mindlin model for orthotropic periodic plates: Application to brickwork panels. Int. J. Solids Struct. 44(18–19), 6055–6079 (2007) MATHCrossRefGoogle Scholar
  5. 5.
    Fischer, S., Drechsler, K., Kilchert, S., Johnson, A.: Mechanical tests for foldcore base material properties. Compos. A, Appl. Sci. Manuf. 40, 1941–1952 (2009) CrossRefGoogle Scholar
  6. 6.
    Gibson, L.J., Ashby, M.F.: Cellular Solids Pergamon, Elmsford (1988) MATHGoogle Scholar
  7. 7.
    Heimbs, S., Mehrens, T., Middendorf, P., Maier, A., Schumacher, M.: Numerical determination of the nonlinear effective mechanical properties of folded core structures for aircraft sandwich panels. In: 6th European LS DYNA User’s Conference, 2006. Google Scholar
  8. 8.
    Kelsey, S., Gellatly, R., Clark, B.: The shmar Modulus of foil honeycomb cores: a theoretical and experimental investigation on cores used in sandwich construction. Aircr. Eng. Aerospace Technol. 30(10), 294–302 (1958) CrossRefGoogle Scholar
  9. 9.
    Kintscher, M., Karger, L., Wetzel, A., Hartung, D.: Stiffness and failure behaviour of folded sandwich cores under combined transverse shear and compression. Compos. A, Appl. Sci. Manuf. 38(5), 1288–1295 (2007) CrossRefGoogle Scholar
  10. 10.
    Lebée, A., Sab, K.: Transverse shear stiffness of a chevron folded core used in sandwich construction. Int. J. Solids Struct. (2010, submitted) Google Scholar
  11. 11.
    Nguyen, M., Jacombs, S., Thomson, R., Hachenberg, D., Scott, M.: Simulation of impact on sandwich structures. Compos. Struct. 67(2), 217–227 (2005) CrossRefGoogle Scholar
  12. 12.
    Reissner, E.: Reflections on the theory of elastic plates. Appl. Mech. Rev. 38(11), 1453–1464 (1985) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.UR Navier, École des Ponts ParisTechUniversité Paris-EstMarne-la-Vallée Cedex 2France

Personalised recommendations