Practical Applications of Simple Cosserat Methods

Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 21)


Motivated by the need to construct models of slender elastic media that are versatile enough to accommodated non-linear phenomena under dynamical evolution, an overview is presented of recent practical applications of simple Cosserat theory. This theory offers a methodology for modeling non-linear continua that is physically accurate and amenable to controlled numerical approximation. By contrast to linear models, where non-linearities are sacrificed to produce a tractable theory, large deformations are within the range of validity of simple Cosserat models. The geometry of slender and shell-like bodies is exploited to produce a theory that contains as few degrees of freedom as is physically reasonable. In certain regimes it is possible to include fluid-structure interactions in Cosserat rod theory in order to model, for example, drill-string dynamics, undersea riser dynamics and cable-stayed bridges in light wind-rain conditions. The formalism also lends itself to computationally efficient, effective models of microscopic carbon nanotubes and macroscopic gravitational antennae.


Gravitational Wave Vortex Sheet Radial Breathing Mode Torsional Motion Stay Cable 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antman, S.S.: Nonlinear Problems of Elasticity, 2nd edn. Applied Mathematical Sciences, vol. 107, Springer, Berlin (2005) MATHGoogle Scholar
  2. 2.
    Balanov, A., Janson, N., McClintock, P.V.E., Tucker, R.W., Wang, C.: Bifurcation analysis of a neutral delay differential equation modelling the torsional motion of a driven drill string. Chaos Solitons Fractals 15(2), 381–394 (2002) CrossRefGoogle Scholar
  3. 3.
    Burton, D.A., Gould, T.: Dynamical model of Cosserat nanotubes. J. Phys., Conf. Ser. 62(1), 23–33 (2007) CrossRefGoogle Scholar
  4. 4.
    Burton, D.A., Tucker, R.W.: Geometry and dynamics of vortex sheets in 3 dimensions. Theor. Appl. Mech. (Belgrade) 28–29, 55 (2002) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Burton, D.A., Hartley, D., Tucker, R.W.: Vortex-Induced Fluid Forces on Accelerating Rigid Boundaries in 2 Dimensions. Proc. 5th International Seminar on Geometry, Continua and Microstructure. Editura Academiei Romane, Sinaia (2001) Google Scholar
  6. 6.
    Burton, D.A., Gratus, J., Tucker, R.W.: Hydrodynamic forces on two moving discs. Theor. Appl. Mech. (Belgrade) 31(2), 153–188 (2004) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Burton, D.A., Cao, D.Q., Tucker, R.W., Wang, C.: On the stability of stay cables under light wind and rain conditions. J. Sound Vib. 279(1–2), 89–117 (2005) CrossRefGoogle Scholar
  8. 8.
    Cao, D.Q., Tucker, R.W., Wang, C.: A stochastic approach to cable dynamics with moving rivulets. J. Sound Vib. 268(2), 291–304 (2003) CrossRefGoogle Scholar
  9. 9.
    Cao, D., Liu, D., Preston, S., Tucker, R.W.: Thermo-mechanics of Cosserat rods. In: Proc. Symposium on the Mechanics of Slender Structure (MoSS 2006) (CDROM) Google Scholar
  10. 10.
    Coomer, J., Lazarus, M., Tucker, R.W., Kershaw, D., Tegman, A.: A non-linear eigenvalue problem associated with inextensible whirling strings. J. Sound Vib. 239(5), 969–982 (2001) CrossRefGoogle Scholar
  11. 11.
    Gould, T., Burton, D.A.: A Cosserat rod model with microstructure. New J. Phys. 8(137) (2006) Google Scholar
  12. 12.
    Gratus, J., Tucker, R.W.: The dynamics of Cosserat nets. J. Appl. Math. 4, 187–226 (2003) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Hartley, D.H., Tucker, R.W., Tung, R., Wang, C.: On parametrically excited flexural motion of an extensible and shearable rod with a heavy attachment. Tech. Mech. 20(2), 147 (2000) Google Scholar
  14. 14.
    Tucker, R.W., Tung, R., Wang, C.: Non-linear flexural excitations and drill-string dynamics. Extr. Math. 14(2), 217 (1999) MATHMathSciNetGoogle Scholar
  15. 15.
    Tucker, R.W., Wang, C.: An integrated model for drill-string dynamics. J. Sound Vib. 224, 123–165 (1999) CrossRefGoogle Scholar
  16. 16.
    Tucker, R.W., Wang, C.: A Cosserat detector for dynamic geometry. Rend. Semin. Mat., Univ. Politec. Torino 58(2), 245–256 (2000) MATHMathSciNetGoogle Scholar
  17. 17.
    Tucker, R.W., Wang, C.: Gravitational wave induced vibrations of slender structures in space. Gen. Relativ. Gravit. 35(12), 2137–2158 (2003) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of PhysicsLancaster UniversityLancasterUK

Personalised recommendations