Skip to main content

Generalized Continuum Mechanics: What Do We Mean by That?

  • Chapter
  • First Online:

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 21))

Abstract

Discursive historical perspective on the developments and ramifications of generalized continuum mechanics from its inception by the Cosserat brothers (Théorie des corps déformables. Hermann, 1909) with their seminal work of 1909 to the most current developments and applications is presented. The point of view adopted is that generalization occurs through the successive abandonment of the basic working hypotheses of standard continuum mechanics of Cauchy, that is, the introduction of a rigidly rotating microstructure and couple stresses (Cosserat continua or micropolar bodies, nonsymmetric stresses), the introduction of a truly deformable microstructure (micromorphic bodies), “weak” nonlocalization with gradient theories and the notion of hyperstresses, and the introduction of characteristic lengths, “strong nonlocalization” with space functional constitutive equations and the loss of the Cauchy notion of stress, and finally giving up the Euclidean and even Riemannian material background. This evolution is paved by landmark papers and timely scientific gatherings (e.g., Freudenstadt, 1967; Udine, 1970, Warsaw, 1977).

Preliminary note: Over 40 years, the author has benefited from direct studies under, and lectures from, P. Germain, A.C. Eringen, E.S. Suhubi, R.D. Mindlin, W. Nowacki, V. Sokolowski, S. Stojanovic, from contacts with J.L. Ericksen, C.A. Truesdell and D.G.B. Edelen, from friendship with C.B. Kafadar, J.M. Lee, D. Rogula, H.F. Tiersten, J. Jaric, P.M. Naghdi, I.A. Kunin, L.I. Sedov, V.L. Berdichevskii, E. Kröner, and most of the authors in the present volume as co-workers or friends, all active contributors to the present subject matter. He apologizes to all these people who certainly do not receive here the fully deserved recognition for their contribution to the field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aero, E.L., Kuvshinskii, E.V.: Fundamental equations of the theory of elastic media with rotationally interacting particles. Sov. Phys. Solid State 2, 1272–1281 (1961). Engl. Transl.; in Russian (1960)

    Google Scholar 

  2. Burton, C.V.: Theory concerning the constitution of matter. Philos. Mag. 33(201), 191–204 (1891)

    Google Scholar 

  3. Capriz, G.: Continua with Microstructure. Springer, New York (1989)

    MATH  Google Scholar 

  4. Casal, P.: Capillarité interne en mécanique. C. R. Acad. Sci. Paris 256, 3820–3822 (1963)

    MATH  Google Scholar 

  5. Christov, C.I., Maugin, G.A., Porubov, A.S.: On Boussinesq’s paradigm on nonlinear wave propagation. C. R. Méc. 335(9–10), 521–535 (2007). Acad. Sci. Paris, Special Issue on Boussinesq

    MATH  Google Scholar 

  6. Cosserat, E., Cosserat, F.: Théorie des corps déformables. Hermann, Paris (1909). Reprint, Gabay, Paris (2008)

    Google Scholar 

  7. Dell’Isola, F., Seppecher, P.: The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. C. R. Acad. Sci. Paris IIb 321, 303–308 (1995)

    MATH  Google Scholar 

  8. Drouot, R., Maugin, G.A.: Phenomenological theory for polymer diffusion in non-homogeneous velocity gradient flows. Rheolog. Acta 22(4), 336–347 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duhem, P.: Le potentiel thermodynamique et la pression hydrostatique. Ann. Ecol. Norm. 10, 187–230 (1893)

    MathSciNet  Google Scholar 

  10. Duvaut, G.: Application du principe de l’indifférence matérielle à un milieu élastique matériellement polarisé. C. R. Acad. Sci. Paris 258, 3631–3634 (1964)

    MathSciNet  MATH  Google Scholar 

  11. Duvaut, G.: Lois de comportement pour un milieu isotrope matériellement polarisé de degré 2. C. R. Acad. Sci. Paris 259, 3178–3179 (1964)

    MathSciNet  MATH  Google Scholar 

  12. Einstein, A.: Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 49, 769–822 (1916)

    Article  Google Scholar 

  13. Einstein, A.: The Meaning of Relativity. Princeton University Press, Princeton (1956)

    Google Scholar 

  14. Epstein, M., Maugin, G.A.: The energy-momentum tensor and material uniformity in finite elasticity. Acta Mech. 83(3–4), 127–133 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Epstein, M., Maugin, G.A.: Notions of material uniformity and homogeneity. In: Tatsumi, T., Watanabe, E., Kambe, T. (eds.) Theoretical and Applied Mechanics, Opening Lecture of MS1, ICTAM, Kyoto, 1996, pp. 201–215. Elsevier, Amsterdam (1997)

    Google Scholar 

  16. Epstein, M., Maugin, G.A.: Thermomechanics of volumetric growth in uniform bodies. Int. J. Plast. 16(7–8), 951–978 (2000)

    Article  MATH  Google Scholar 

  17. Ericksen, J.L.: Anisotropic fluids. Arch. Ration. Mech. Anal. 4, 231–237 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  19. Eringen, A.C.: Theory of micropolar elasticity. In: Liebowitz, H. (ed.) Fracture: A Treatise, vol. II, pp. 621–729. Academic Press, New York (1968)

    Google Scholar 

  20. Eringen, A.C.: Microcontinuum Field Theories, I—Foundations and Solids. Springer, New York (1999)

    MATH  Google Scholar 

  21. Eringen, A.C.: Microcontinuum Field Theories, II—Fluent Media. Springer, New York (2001)

    MATH  Google Scholar 

  22. Eringen, A.C.: Nonlocal continuum field theories. Springer, New York (2002)

    MATH  Google Scholar 

  23. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  24. Eringen, A.C., Maugin, G.A.: Electrodynamics of Continua, 2 vols. Springer, New York (1990)

    Google Scholar 

  25. Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple microelastic solids I. Int. J. Eng. Sci. 2(2), 189–203 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  26. Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple microelastic solids II. Int. J. Eng. Sci. 2(4), 389–404 (1964)

    Article  MathSciNet  Google Scholar 

  27. Forest, S.: Milieux continus généralisés et matériaux hétérogènes. Presses de l’Ecole des Mines, Paris (2006)

    Google Scholar 

  28. Gauthier, R.D., Jashman, W.E.: A quest for micropolar elastic constants. J. Appl. Mech., Trans. ASME Ser. E 42(2), 369–374 (1975)

    Google Scholar 

  29. Germain, P.: La méthode des puissances virtuelles en mécanique des milieux continus, Première partie: théorie du second gradient. J. Méc. (Paris) 12, 235–274 (1973)

    MathSciNet  MATH  Google Scholar 

  30. Germain, P.: The method of virtual power in continuum mechanics—II: Microstructure. SIAM J. Appl. Math. 25(3), 556–575 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  31. Green, A.E., Naghdi, P.M.: Micropolar and director theories of plates. Q. J. Mech. Appl. Math. 20, 183–199 (1967)

    Article  MATH  Google Scholar 

  32. Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113–147 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  33. Grioli, G.: Elasticità asimmetrica. Ann. Mat. Pura Appl., Ser. IV 50, 389–417 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  34. Günther, W.: Zur Statik und Kinematik des Cosseratschen Kontinuums. Abh. Braunschweig. Wiss. Ges. 10, 195 (1958)

    MATH  Google Scholar 

  35. Hartmann, C.: Ecoulement d’un fluide micropolaire autour de la sphère à faible nombre de Reynolds. J. Méc. (Paris) 12(1), 97–120 (1973)

    MATH  Google Scholar 

  36. Hellinger, E.: Die allgemeinen Ansätze der Mechanik der Kontinua. In: Klein, F., Wagner, K. (eds.) Enz. Math. Wiss, vol. 4, pp. 602–694. Springer, Berlin (1914)

    Google Scholar 

  37. Kafadar, C.B., Eringen, A.C.: Micropolar media—I—The classical theory. Int. J. Eng. Sci. 9(3), 271–308 (1971)

    Article  Google Scholar 

  38. Kondo, K.: Non-Riemannian geometry of imperfect crystals from a macroscopic viewpoint. In: Kondo, K. (ed.) RAAG Memoirs of the Unifying Study of Basic Problems in Engineering and Physical Sciences by Means of Geometry, vol. 1, pp. 459–480. Gakujutsu Bunken Fukyukai, Tokyo (1955)

    Google Scholar 

  39. Korteweg, D.J.: Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l’hypothèse d’une variation de la densité. Arch. Néer. Sci. Exactes Nat., Sér. II 6, 1–24 (1901)

    Google Scholar 

  40. Kröner, E.: Kontinuumstheorie der Versetzungen und Eigenspannungen. Springer, Berlin (1958)

    MATH  Google Scholar 

  41. Kröner, E. (ed.): Generalized Continua. Proc. IUTAM Symp. Freudenstadt. Springer, Berlin (1968)

    Google Scholar 

  42. Kröner, E., Datta, B.K.: Nichtlokal Elastostatik: Ableitung aus der Gittertheorie. Z. Phys. 196(3), 203–211 (1966)

    Google Scholar 

  43. Kunin, I.A.: Model of elastic medium with simple structure and space dispersion. Prikl. Mat. Mekh. 30, 542–550 (1966)

    Google Scholar 

  44. Kunin, I.A.: Elastic Media with Microstructure I & II. Springer, Berlin (1982). Translated from the 1975 Russian edition

    Google Scholar 

  45. Laval, J.: L’élasticité du milieu cristallin. J. Phys. Radium 18(4), 247–259 (1957)

    Article  MathSciNet  Google Scholar 

  46. Laval, J.: L’élasticité du milieu cristallin II. J. Phys. Radium 18(5), 289–296 (1957)

    Article  MathSciNet  Google Scholar 

  47. Laval, J.: L’élasticité du milieu cristallin III. J. Phys. Radium 18(6), 369–379 (1957)

    Article  MathSciNet  Google Scholar 

  48. Lazar, M., Maugin, G.A.: On microcontinuum field theories: the Eshelby stress tensor and incompatibility conditions. Philos. Mag. 87, 3853–3870 (2007)

    Article  Google Scholar 

  49. Le Corre, Y.: La dissymétrie du tenseur des efforts et ses conséquences. J. Phys. Radium 17(11), 934–939 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  50. Le Roux, J.: Etude géométrique de la torsion et de la flexion, dans les déformations infinitésimales d’un milieu continu. Ann. Ecole Norm. Super. 28, 523–579 (1911)

    MathSciNet  Google Scholar 

  51. Le Roux, J.: Recherches sur la géométrie des déformations finies. Ann. Ecole Norm. Super. 30, 193–245 (1913)

    MathSciNet  Google Scholar 

  52. Leslie, F.M.: Constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265–283 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  53. Maugin, G.A.: Un principe variationnel pour des milieux micromorphiques non dissipatifs. C. R. Acad. Sci. Paris A 271, 807–810 (1970)

    MATH  Google Scholar 

  54. Maugin, G.A.: Micromagnetism and polar media. PhD thesis, Princeton University (1971)

    Google Scholar 

  55. Maugin, G.A.: Nonlocal theories or gradient-type theories: a matter of convenience? Arch. Mech. 31(1), 15–26 (1979). PL, Proc. Euromech Coll. on Nonlocal Theories, Warsaw (1977)

    MathSciNet  MATH  Google Scholar 

  56. Maugin, G.A.: Method of virtual power in continuum-mechanics: application to coupled fields. Acta Mech. 35(1–2), 1–70 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  57. Maugin, G.A.: Continuum Mechanics of Electromagnetic Solids. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  58. Maugin, G.A.: Internal variables and dissipative structures. J. Non-Equilib. Thermodyn. 15(2), 173–192 (1990)

    Article  Google Scholar 

  59. Maugin, G.A.: Material Inhomogeneities in Elasticity. Chapman & Hall, London (1993)

    MATH  Google Scholar 

  60. Maugin, G.A.: Nonlinear Waves in Elastic Crystals. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  61. Maugin, G.A.: Pseudo-plasticity and pseudo-inhomogeneity effects in materials mechanics. J. Elast. 71(1–3), 81–103 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  62. Maugin, G.A.: Geometry and thermomechanics of structural rearrangements: Ekkehart Kroener’s Legacy. Z. Angew. Math. Mech. 83(2), 75–84 (2003). GAMM’2002, Kröener’s Lecture, Augsbug (2002)

    Article  MathSciNet  MATH  Google Scholar 

  63. Maugin, G.A., Christov, C.I.: Nonlinear waves and conservation laws (nonlinear duality between elastic waves and quasi-particles). In: Christov, C.I., Guran, A. (eds.) Topics in Nonlinear Wave Mechanics, p. 40. Birkhäuser, Boston (2002)

    Google Scholar 

  64. McCullagh, J.: An essay towards a dynamical theory of crystalline reflexion and refraction. Trans. R. Irish Acad. Sci. 21, 17–50 (1839)

    Google Scholar 

  65. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)

    Article  MATH  Google Scholar 

  66. Mindlin, R.D., Tiersten, H.F.: Effects of couple stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  67. Neuber, H.: On the general solution of linear elastic problems in isotropic and anisotropic Cosserat continua. In: Contribution to 11th International Conference of Applied Mechanics, München, 1964

    Google Scholar 

  68. Noll, W.: Materially uniform simple bodies with inhomogeneities. Arch. Ration. Mech. Anal. 27, 1–32 (1967)

    Article  MathSciNet  Google Scholar 

  69. Noll, W., Virga, E.G.: On edge interactions and surface tension. Arch. Ration. Mech. Anal. 111, 1–31 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  70. Nowacki, W.: Theory of Asymmetric Elasticity. Pergamon, Oxford (1986)

    MATH  Google Scholar 

  71. Palmov, A.: Fundamental equations of the theory of asymmetric elasticity. Prokl. Mat. Mekh. 28, 401–408 (1964)

    MathSciNet  Google Scholar 

  72. Pijaudier-Cabot, G., Bazant, Z.P.: Nonlocal damage theory. J. Eng. Mech. ASCE 113(10), 1512–1533 (1987)

    Article  Google Scholar 

  73. Pouget, J., Maugin, G.A.: Non-linear electroacoustic equations for piezoelectric powders. J. Acoust. Soc. Am. 74(3), 925–940 (1983)

    Article  MATH  Google Scholar 

  74. Pouget, J., Maugin, G.A.: Nonlinear dynamics of oriented elastic solids—I—Basic equations. J. Elast. 22(2–3), 135–155 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  75. Rakotomanana, L.R.: A Geometric Approach to Thermomechanics of Dissipating Continua. Birkhäuser, Boston (2003)

    Google Scholar 

  76. Rogula, D.: Influence of spatial acoustic dispersion on dynamical properties of dislocations. Bull. Acad. Pol. Sci., Sér. Si. Tech. 13, 337–385 (1965)

    Google Scholar 

  77. Schaefer, H.: Das Cosserat-Kontinuum. Z. Angew. Math. Mech. 47, 34 (1967)

    Google Scholar 

  78. Stojanovic, R.: Mechanics of Polar Continua. CISM, Udine (1969)

    Google Scholar 

  79. Stokes, V.K.: Theories of Fluids with Microstructure. Springer, Berlin (1984)

    Google Scholar 

  80. Toupin, R.A.: Elastic materials with couple stress. Arch. Ration. Mech. Anal. 11, 395–414 (1962)

    Article  MathSciNet  Google Scholar 

  81. Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  82. Truesdell, C.A., Noll, W.: Nonlinear field theories of mechanics. In: Flügge, S. (ed.) Handbuch der Physik, Bd. III/3. Springer, Berlin (1965)

    Google Scholar 

  83. Truesdell, C.A., Toupin, R.A.: The classical theory of fields. In: Flügge, S. (ed.) Handbuch der Physik, Bd. III/1. Springer, Berlin (1960)

    Google Scholar 

  84. Wang, C.C.: On the geometric structure of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations. Arch. Ration. Mech. Anal. 27, 33–94 (1967)

    Article  MATH  Google Scholar 

  85. Whittaker, E.T.: A History of the Theories of Aether and Elasticity, vols. 1 and 2. Thomas Nelson, New York (1951). Reprint in one volume, Dover, New York (1953)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard A. Maugin .

Editor information

Editors and Affiliations

Additional information

Dedicated to A.C. Eringen

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Maugin, G.A. (2010). Generalized Continuum Mechanics: What Do We Mean by That?. In: Maugin, G., Metrikine, A. (eds) Mechanics of Generalized Continua. Advances in Mechanics and Mathematics, vol 21. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5695-8_1

Download citation

Publish with us

Policies and ethics