Advertisement

Local Neighborhoods for the Multidimensional Assignment Problem

  • Eduardo L. PasiliaoJr.
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 40)

Summary

The Multidimensional Assignment Problem (MAP) is an extension of the two-dimensional assignment problem in which we find an optimal matching of elements between mutually exclusive sets. Although the two-dimensional assignment problem is solvable in polynomial time, extending the problem to three dimensions makes it \(\mathcal {NP}\)-complete. The computational time to find an optimal solution of an MAP with at least three dimensions grows exponentially with the number of dimensions and factorially with the dimension size. Perhaps the most difficult implementation of the MAP is the data association problem that arises in multisensor multitarget tracking. We define new local search neighborhoods using the permutation formulation of the multidimensional assignment problem, where the feasible domain is defined by permutation vectors. Two types of neighborhoods are discussed, the intrapermutation and the interpermutation k-exchange. If the exchanges are restricted to elements within a single permutation vector, we classify the moves as intrapermutation. Interpermutation exchanges move elements from one permutation vector to another. Since combinatorial optimization heuristics tend to get trapped in local minima, we also discuss variable neighborhood implementations based on the new local search neighborhoods.

Keywords

Local Search Assignment Problem Local Neighborhood Variable Neighborhood Variable Neighborhood Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja, R.K., Ergun, Ö., Orlin, J.B., Punnen, A.P.: A survey of very large-scale neighborhood search techniques. Discrete Appl. Math. 123(1–3), 75–102 (2002) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Aiex, R.M., Pardalos, P.M., Resende, M.G.C., Toraldo, G.: GRASP with path relinking for the three-index assignment problem. INFORMS J. Comput. 17(2), 224–247 (2005) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Balas, E., Saltzman, M.J.: An algorithm for the three-index assignment problem. Oper. Res. 39(1), 150–161 (1991) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Blackman, S.S.: Multiple-Target Tracking with Radar Applications. Artech House, Norwood (1986) Google Scholar
  5. 5.
    Burkard, R.E., Çela, E.: Quadratic and three-dimensional assignment problems: An annotated bibliography. In: DellAmico, M., Maffioli, F., Martello, S. (eds.) Annotated Bibliographies in Combinatorial Optimization, pp. 373–392. Wiley, New York (1997). Chap. 21 Google Scholar
  6. 6.
    Burkard, R.E., Çela, E.: Linear assignment problems and extensions. In: Du, D., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, pp. 75–149. Kluwer Academic, Dordrecht (1999). Chap. 21 Google Scholar
  7. 7.
    Çela, E.: Assignment problems. In: Pardalos, P.M., Resende, M.G.C. (eds.) Handbook of Applied Optimization, pp. 661–678. Oxford University Press, New York (2002). Chap. 17.9 Google Scholar
  8. 8.
    Gilbert, K., Hofstra, R.: Multidimensional assignment models. Decis. Sci. 19, 306–321 (1988) CrossRefGoogle Scholar
  9. 9.
    Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applications. Eur. J. Oper. Res. 130, 449–467 (2001) MATHCrossRefGoogle Scholar
  10. 10.
    Hansen, P., Mladenović, N.: Variable neighborhood search. In: Pardalos, P.M., Resende, M.G.C. (eds.) Handbook of Applied Optimization, pp. 221–234. Oxford University Press, New York (2002). Chap. 3.6.9 Google Scholar
  11. 11.
    Laguna, M., Martí, R.: GRASP and path relinking for 2-layer straight line crossing minimization. INFORMS J. Comput. 11, 44–52 (1999) MATHCrossRefGoogle Scholar
  12. 12.
    Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling salesman problem. Oper. Res. 21, 498–516 (1973) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics. International Series in Operations Research and Management Science, vol. 57, pp. 321–353. Kluwer Academic, Dordrecht (2002) Google Scholar
  14. 14.
    Pardalos, P.M., Pitsoulis, L.S. (eds.): Nonlinear Assignment Problems: Algorithms and Applications. Combinatorial Optimization, vol. 7. Kluwer Academic, Dordrecht (2000) MATHGoogle Scholar
  15. 15.
    Spieksma, F.C.R.: Multi index assignment problems: Complexity, approximation, applications. In: Pardalos, P.M., Pitsoulis, L.S. (eds.) Nonlinear Assignment Problems: Algorithms and Applications. Combinatorial Optimization, vol. 7, pp. 1–12. Kluwer Academic, Dordrecht (2000). Chap. 1 Google Scholar
  16. 16.
    Yagiura, M., Ibaraki, T.: Local search. In: Pardalos, P.M., Resende, M.G.C. (eds.) Handbook of Applied Optimization, pp. 104–123. Oxford University Press, New York (2002). Chap. 3.5 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.AFRL Munitions DirectorateEglin AFBUSA

Personalised recommendations