Advertisement

Minimal Switching Time of Agent Formations with Collision Avoidance

  • Dalila B. M. M. Fontes
  • Fernando A. C. C. Fontes
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 40)

Summary

We address the problem of dynamically switching the topology of a formation of a number of undistinguishable agents. Given the current and the final topologies, each with n agents, there are n! possible allocations between the initial and final positions of the agents. Given the agents maximum velocities, there is still a degree of freedom in the trajectories that might be used in order to avoid collisions. We seek an allocation and corresponding agent trajectories minimizing the maximum time required by all agents to reach the final topology, avoiding collisions. Collision avoidance is guaranteed through an appropriate choice of trajectories, which might have consequences in the choice of an optimal permutation. We propose here a dynamic programming approach to optimally solve problems of small dimension. We report computational results for problems involving formations with up to 12 agents.

Keywords

Mobile Robot Model Predictive Control Collision Avoidance Recursive Function Dynamic Programming Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Data Structures and Algorithms. Addison-Wesley, Reading (1983) MATHGoogle Scholar
  2. 2.
    Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957) Google Scholar
  3. 3.
    Bender, J.: An overview of systems studies of automated highway systems. IEEE Trans. Veh. Technol. 40(1 Part 2), 82–99 (1991) CrossRefGoogle Scholar
  4. 4.
    Buzogany, L.E., Pachter, M., d’Azzo, J.J.: Automated control of aircraft in formation flight. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, pp. 1349–1370, Monterey, California (1993) Google Scholar
  5. 5.
    Desai, J.P., Ostrowski, P., Kumar, V.: Modeling and control of formations of nonholonomic mobile robots. IEEE Trans. Robot. Autom. 17(6), 905–908 (2001) CrossRefGoogle Scholar
  6. 6.
    Fontes, D.B.M.M., Fontes, F.A.C.C.: Optimal reorganization of agent formations. WSEAS Trans. Syst. Control 3(9), 789–798 (2008) Google Scholar
  7. 7.
    Fontes, F.A.C.C., Fontes, D.B.M.M., Caldeira, A.C.D.: Model predictive control of vehicle formations. In: Pardalos, P., Hirsch, M.J., Commander, C.W., Murphey, R. (eds.) Optimization and Cooperative Control Strategies. Lecture Notes in Control and Information Sciences, vol. 381. Springer, Berlin (2009). ISBN:978-3-540-88062-2 CrossRefGoogle Scholar
  8. 8.
    Hu, J., Sastry, S.: Optimal collision avoidance and formation switching on Riemannian manifolds. In: IEEE Conference on Decision and Control, vol. 2, pp. 1071–1076. IEEE Press, New York (1998) Google Scholar
  9. 9.
    Jin, Z., Shima, T., Schumacher, C.J.: Optimal scheduling for refueling multiple autonomous aerial vehicles. IEEE Trans. Robot. 22(4), 682–693 (2006) CrossRefGoogle Scholar
  10. 10.
    Murray, R.M.: Recent research in cooperative control multivehicle systems. J. Dyn. Syst. Meas. Control 129, 571–583 (2007) CrossRefGoogle Scholar
  11. 11.
    Rasmussen, S.J., Shima, T.: Branch and bound tree search for assigning cooperating UVAs to multiple tasks. In: Institute of Electrical and Electronic Engineers, American Control Conference 2006, Minneapolis, Minnesota, USA (2006) Google Scholar
  12. 12.
    Rasmussen, S.J., Shima, T., Mitchell, J.W., Sparks, A., Chandler, P.R.: State-space search for improved autonomous UAVs assignment algorithm. In: IEEE Conference on Decision and Control, Paradise Island, Bahamas (2004) Google Scholar
  13. 13.
    Schumacher, C.J., Chandler, P.R., Rasmussen, S.J.: Task allocation for wide area search munitions via iterative network flow. In: American Institute of Aeronautics and Astronautics, Guidance, Navigation, and Control Conference 2002, Reston, Virginia, USA (2002) Google Scholar
  14. 14.
    Schumacher, C.J., Chandler, P.R., Rasmussen, S.J.: Task allocation for wide area search munitions with variable path length. In: Institute of Electrical and Electronic Engineers, American Control Conference 2003, New York, USA (2003) Google Scholar
  15. 15.
    Smith, T.R., Hanssmann, H., Leonard, N.E.: Orientation control of multiple underwater vehicles with symmetry-breaking potentials. In: IEEE Conference on Decision and Control, vol. 5, pp. 4598–4603 (2001) Google Scholar
  16. 16.
    Swaroop, D., Hedrick, J.K.: Constant spacing strategies for platooning in automated highway systems. J. Dyn. Syst. Meas. Control 121, 462 (1999) CrossRefGoogle Scholar
  17. 17.
    Wolfe, J.D., Chichka, D.F., Speyer, J.L.: Decentralized controllers for unmanned aerial vehicle formation flight. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, pp. 96–3833, San Diego, California (1996) Google Scholar
  18. 18.
    Yamagishi, M.: Social rules for reactive formation switching. Technical Report UWEETR-2004-0025, Department of Electrical Engineering, University of Washington, Seattle, Washington, USA (2004) Google Scholar
  19. 19.
    Yamaguchi, H.: A cooperative hunting behavior by mobile-robot troops. Int. J. Robot. Res. 18(9), 931 (1999) CrossRefGoogle Scholar
  20. 20.
    Yamaguchi, H., Arai, T., Beni, G.: A distributed control scheme for multiple robotic vehicles to make group formations. Robot. Auton. Syst. 36(4), 125–147 (2001) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Dalila B. M. M. Fontes
    • 1
  • Fernando A. C. C. Fontes
    • 2
  1. 1.LIAAD—INESC Porto L.A. and Faculdade de EconomiaUniversidade do PortoPortoPortugal
  2. 2.ISR Porto and Faculdade de EngenhariaUniversidade do PortoPortoPortugal

Personalised recommendations