Decentralized Cooperative Control of Autonomous Surface Vehicles

Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 40)

Summary

Many pressing issues associated with control of cooperative intelligent systems involve challenges that arise from the difficulty of coordinating multiple task objectives in highly dynamic, unstructured environments. This chapter presents a multi-objective cooperative control methodology for a team of autonomous surface vehicles deployed with the purpose of protecting a waterway against hostile intruders. The methodology captures the intent of a human commander by breaking down high-level mission objectives into specific task assignments for a fleet of autonomous boats with a suite of on-board sensors, limited processing units, and short-range communication capabilities. The fundamental technologies supporting our control method have already been field-tested on a team of autonomous aerial vehicles, and the aim of this work is to extend the previously developed theories to multiple problem domains using heterogeneous vehicle platforms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benjamin, M., Curcio, J., Leonard, J., Newman, P.: A method for protocol-based collision avoidance between autonomous marine surface craft. J. Field Robotics 23(5) (2006) Google Scholar
  2. 2.
    DeLima, P., Pack, D.: Toward developing an optimal cooperative search algorithm for multiple unmanned aerial vehicles. In: Proceedings of the International Symposium on Collaborative Technologies and Systems (CTS-08), pp. 506–512, May 2008 Google Scholar
  3. 3.
    Gibbons, J.D.: Nonparametric Statistical Inference. Marcel Dekker, New York (1985) MATHGoogle Scholar
  4. 4.
    Matos, A., Cruz, N.: Coordinated operation of autonomous underwater and surface vehicles. In: Proceedings of the Oceans 2007, pp. 1–6, October 2007 Google Scholar
  5. 5.
    Pack, D., York, G.: Developing a control architecture for multiple unmanned aerial vehicles to search and localize RF time-varying mobile targets: part I. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3965–3970, April 2005 Google Scholar
  6. 6.
    Pack, D., DeLima, P., Toussaint, G., York, G.: Cooperative control of UAVs for localization of intermittently emitting mobile targets. IEEE Trans. Syst. Man Cybern. Part B, Cybern. 39(4), 959–970 (2009) CrossRefGoogle Scholar
  7. 7.
    Plett, G., DeLima, P., Pack, D.: Target localization using multiple UAVs with sensor fusion via Sigma-Point Kalman filtering. In: Proceedings of the 2007 AIAA (2007) Google Scholar
  8. 8.
    Plett, G., Zarzhitsky, D., Pack, D.: Out-of-order Sigma-Point Kalman filtering for target localization using cooperating unmanned aerial vehicles. In: Hirsch, M.J., Pardalos, P.M., Murphey, R., Grundel, D. (eds.) Advances in Cooperative Control and Optimization. Lecture Notes in Control and Information Sciences, vol. 369, pp. 22–44 (2007) Google Scholar
  9. 9.
    Willcox, S., Goldberg, D., Vaganay, J., Curcio, J.: Multi-vehicle cooperative navigation and autonomy with the bluefin CADRE system. In: Proceedings of the International Federation of Automatic Control Conference (IFAC-06), September 2006 Google Scholar
  10. 10.
    Zarzhitsky, D., Schlegel, M., Decker, A., Pack, D.: An event-driven software architecture for multiple unmanned aerial vehicles to cooperatively locate mobile targets. In: Hirsch, M.J., Commander, C., Pardalos, P.M., Murphey, R. (eds.) Optimization and Cooperative Control Strategies. Lecture Notes in Control and Information Sciences, vol. 381, pp. 299–318 (2009) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringU.S. Air Force AcademyUSAFAUSA

Personalised recommendations