Integration of Signals in Complex Biophysical Systems

  • Alla Kammerdiner
  • Nikita Boyko
  • Nong Ye
  • Jiping He
  • Panos Pardalos
Part of the Springer Optimization and Its Applications book series (SOIA, volume 40)


There is clear evidence of fusion processes exhibited by biophysical systems, such as the brain. One simple example is the way a human brain processes visual information. In fact, one of the consequences of normal integration of the visual information from two retinas in the visual cortex is ability for depth perception. In actuality, a primate brain is capable of integrating visual, auditory, cutaneous, and proprioceptive signals in order to extract crucial information that may not otherwise be fully present in any single type of signal.

Our analysis of neural data collected from primates during sensory-motor experiments shows a clear presence of transient fusion of neural signals. In particular, the activity in the brain regions responsible for motor planning and control exhibit cointegration among the instantaneous phase measures, which is associated with generalized phase synchronization of neural activity.


Phase Synchronization Instantaneous Phase Consecutive Time Interval Multiple Time Series Cointegration Rank 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Afraimovich, V.S., Verichev, N.N., Rabinovich, M.I.: General synchronization. Izv. Vysš. Učeb. Zaved. Radiofiz. 29, 795–803 (1986) MathSciNetGoogle Scholar
  2. 2.
    Bronshtein, I.N., Semendyayev, K.A.: Handbook of Mathematics, 3rd edn. Springer, New York (1997) MATHGoogle Scholar
  3. 3.
    Fries, P., Reynolds, J.H., Rorie, A.E., Desimone, R.: Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291, 1560–1563 (2001) CrossRefGoogle Scholar
  4. 4.
    Fujisaka, H., Yamada, T.: Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 69, 32–47 (1983) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gabor, D.: Theory of communication. Proc. IEEE Lond. 93, 429 (1946) Google Scholar
  6. 6.
    Gray, C.M., Koenig, P., Engel, A.K., Singer, W.: Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 23, 334–337 (1989) CrossRefGoogle Scholar
  7. 7.
    Johansen, S., Juselius, K.: Maximum likelihood estimation and inference on cointegration – with applications to the demand for money. Oxford Bull. Econ. Stat. 52, 169–210 (1990) CrossRefGoogle Scholar
  8. 8.
    Kammerdiner, A.: Statistical methods in data mining of brain dynamics. PhD dissertation, University of Florida, Gainesville, FL (2008) Google Scholar
  9. 9.
    Kitajo, K., Doesburg, S.M., Yamanaka, K., Nozaki, D., Ward, L.M., Yamamoto, Y.: Noise-induced large-scale phase synchronization of human-brain activity associated with behavioural stochastic resonance. Europhys. Lett. (2007). doi: 10.1209/0295-5075/80/40009 Google Scholar
  10. 10.
    Lachaux, J.P., Rodriguez, E., Martinerie, J., Varela, F.J.: Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8, 194 (1999) CrossRefGoogle Scholar
  11. 11.
    Le Van Quyen, M., Foucher, J., Lachaux, J.-P., Rodriguez, E., Lutz, A., Martinerie, J., Varela, F.J.: Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. J. Neurosci. Methods 111(2), 83–98 (2001) CrossRefGoogle Scholar
  12. 12.
    Lütkepohl, H.: Introduction to Multiple Time Series Analysis. Springer, Berlin (1991) MATHGoogle Scholar
  13. 13.
    Melloni, L., Molina, C., Pena, M., Torres, D., Singer, W., Rodriguez, E.: Synchronization of neural activity across cortical areas correlates with conscious perception. J. Neurosci. 27, 2858–2865 (2007) CrossRefGoogle Scholar
  14. 14.
    Miltner, W.H.R., Braun, C., Arnold, M., Witte, H., Taub, E.: Coherence of gamma-band EEG activity as a basis for associative learning. Nature 397, 434–436 (1999) CrossRefGoogle Scholar
  15. 15.
    Pikovsky, A., Zaks, M., Rosenblum, M., Osipov, G., Kurths, J.: Phase synchronization of chaotic oscillations in terms of periodic orbits. Chaos 7, 680–687 (1997) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Quian Quiroga, R., Kraskov, A., Kreuz, T., Grassberger, P.: Performance of different synchronization measures in real data: A case study on electroencephalographic signals. Phys. Rev. E 65, 041903 (2002) CrossRefGoogle Scholar
  17. 17.
    Rodriguez, E., George, N., Lachaux, J.-P., Martinerie, J., Renault, B., Varela, F.J.: Perception’s shadow: long-distance synchronization of human brain activity. Nature 397(6718), 430–433 (1999) CrossRefGoogle Scholar
  18. 18.
    Roelfsema, P.R., Engel, A.K., Konig, P., Singer, W.: Visuo-motor integration is associated with zero time-lag synchronization among cortical areas. Nature 385, 157–161 (1997) CrossRefGoogle Scholar
  19. 19.
    Singer, W.: Neuronal synchrony: A versatile code of the definition of relations? Neuron 24, 49–65 (1999) CrossRefGoogle Scholar
  20. 20.
    Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., Farmer, D.: Testing for nonlinearity in time series: The method of surrogate data. Physica D 58(1–4), 77–94 (1992) CrossRefGoogle Scholar
  21. 21.
    Tononi, G., Srinivasan, R., Russell, D.P., Edelman, G.M.: Investigating neural correlates of conscious perception by frequency-tagged neuromagnetic responses. Proc. Natl. Acad. Sci. 95, 3198–3203 (1998) CrossRefGoogle Scholar
  22. 22.
    Uhlhaas, P., Singer, W.: Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron 52, 155–168 (2006) CrossRefGoogle Scholar
  23. 23.
    van der Pol, B., van der Mark, J.: The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Philos. Mag. 6, 763 (1928) Google Scholar
  24. 24.
    Varela, F.J., Lachaux, J.-P., Rodriguez, E., Martinerie, J.: The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2(4), 229–39 (2001) CrossRefGoogle Scholar
  25. 25.
    von Stein, A., Sarnthein, J.: Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int. J. Psychophysiol. 38, 301–313 (2000) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Alla Kammerdiner
    • 1
  • Nikita Boyko
    • 2
  • Nong Ye
    • 1
  • Jiping He
    • 3
  • Panos Pardalos
    • 2
  1. 1.Department of Industrial Engineering and Operations ResearchArizona State UniversityTempeUSA
  2. 2.Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA
  3. 3.Department of Biomedical EngineeringArizona State UniversityTempeUSA

Personalised recommendations