Pair-Correlation in the Time and Frequency Domain

  • Jos J. Eggermont
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI, volume 7)


Neural pair-correlation can be analyzed and represented in both the time and frequency domains. Sometimes it is easier to see the effects in the time domain correlograms, sometimes the frequency representation in the form of the coherence function gives more insight, for instance, about which frequency regions contribute to the correlation. Regardless the preference one might have of the domain for representing the interactions, calculations are generally easier and faster when performed in the frequency domain.


Auditory Cortex Spike Train Neural Correlation Common Input Partial Coherence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aertsen AM, Gerstein GL (1985 Aug 12) Evaluation of neuronal connectivity: sensitivity of cross-correlation. Brain Res 340(2):341–354 CrossRefPubMedGoogle Scholar
  2. Aertsen AM, Smolders JW, Johannesma PI (1979 Mar 19) Neural representation of the acoustic biotope: on the existence of stimulus-event relations for sensory neurons. Biol Cybern 32(3):175–185 CrossRefPubMedGoogle Scholar
  3. Averbeck BB, Lee D (2004 Apr) Coding and transmission of information by neural ensembles. Trends Neurosci 27(4):225–230 CrossRefPubMedGoogle Scholar
  4. Barth DS, MacDonald KD (1996 Sep 5) Thalamic modulation of high-frequency oscillating potentials in auditory cortex. Nature 383(6595):78–81 CrossRefPubMedGoogle Scholar
  5. Bedenbaugh P, Gerstein GL (1997 Aug 15) Multiunit normalized cross correlation differs from the average single-unit normalized correlation. Neural Comput 9(6):1265–1275 CrossRefPubMedGoogle Scholar
  6. Brillinger DR, Bryant HL Jr, Segundo JP (1976 May 17) Identification of synaptic interactions. Biol Cybern 22(4):213–228 CrossRefPubMedGoogle Scholar
  7. Brody CD (1999 Oct 1) Correlations without synchrony. Neural Comput 11(7):1537–1551 CrossRefPubMedGoogle Scholar
  8. Brown EN, Kass RE, Mitra PP (2004 May) Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat Neurosci 7(5):456–461 CrossRefPubMedGoogle Scholar
  9. Brunel N, Hakim V (1999 Oct 1) Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput 11(7):1621–1671 CrossRefPubMedGoogle Scholar
  10. De la Rocha J, Doiron B, Shea-Brown E, Josić K, Reyes A (2007 Aug 16) Correlation between neural spike trains increases with firing rate. Nature 448(7155):802–806 CrossRefPubMedGoogle Scholar
  11. Eggermont JJ (1992a Oct) Neural interaction in cat primary auditory cortex. Dependence on recording depth, electrode separation, and age. J Neurophysiol 68(4):1216–1228 PubMedGoogle Scholar
  12. Eggermont JJ (1992b Aug) Stimulus induced and spontaneous rhythmic firing of single units in cat primary auditory cortex. Hear Res 61(1–2):1–11 CrossRefPubMedGoogle Scholar
  13. Eggermont JJ (1994 Jan) Neural interaction in cat primary auditory cortex II. Effects of sound stimulation. J Neurophysiol 71(1):246–270 PubMedGoogle Scholar
  14. Eggermont JJ (2000 May) Sound-induced synchronization of neural activity between and within three auditory cortical areas. J Neurophysiol 83(5):2708–2722 PubMedGoogle Scholar
  15. Eggermont JJ, Epping WJ, Aertsen AM (1983) Stimulus dependent neural correlations in the auditory midbrain of the grassfrog (Rana temporaria L.). Biol Cybern 47(2):103–117 CrossRefPubMedGoogle Scholar
  16. Eggermont JJ, Smith GM (1995 Nov 13) Rate covariance dominates spontaneous cortical unit-pair correlograms. Neuroreport 6(16):2125–2128 CrossRefPubMedGoogle Scholar
  17. Eggermont JJ, Smith GM (1996 Aug) Neural connectivity only accounts for a small part of neural correlation in auditory cortex. Exp Brain Res 110(3):379–391 CrossRefPubMedGoogle Scholar
  18. Epping WJ, Eggermont JJ (1987 May) Coherent neural activity in the auditory midbrain of the grassfrog. J Neurophysiol 57(5):1464–1483 PubMedGoogle Scholar
  19. Gawne TJ, Richmond BJ (1993 Jul) How independent are the messages carried by adjacent inferior temporal cortical neurons?. J Neurosci 13(7):2758–2771 PubMedGoogle Scholar
  20. Gerstein GL (2000 Jul 31) Cross-correlation measures of unresolved multi-neuron recordings. J Neurosci Methods 100(1–2):41–51 CrossRefPubMedGoogle Scholar
  21. Gourévitch B, Eggermont JJ (2007 Jun 15) A simple indicator of nonstationarity of firing rate in spike trains. J Neurosci Methods 163(1):181–187 CrossRefPubMedGoogle Scholar
  22. Grün S, Diesmann M, Aertsen A (2002 Jan) Unitary events in multiple single-neuron spiking activity: II. Nonstationary data. Neural Comput 14(1):81–119 CrossRefPubMedGoogle Scholar
  23. Horikawa J, Tanahashi A, Suga N (1994 Jun 1) After-discharges in the auditory cortex of the mustached bat: no oscillatory discharges for binding auditory information. Hear Res 76(1–2):45–52 CrossRefPubMedGoogle Scholar
  24. Joris PX, Louage DH, Cardoen L, van der Heijden M (2006 Jun–Jul) Correlation index: a new metric to quantify temporal coding. Hear Res 216–217:19–30 CrossRefPubMedGoogle Scholar
  25. Kriener B, Tetzlaff T, Aertsen A, Diesmann M, Rotter S (2008 Sep) Correlations and population dynamics in cortical networks. Neural Comput 20(9):2185–2226 CrossRefPubMedGoogle Scholar
  26. Krüger J (1991) Spike train correlations on slow time scales in monkey visual cortex. In: Krüger J (Ed) Neuronal cooperativity. Springer-Verlag, Berlin, Heidelberg, pp 105–132 Google Scholar
  27. Melssen WJ, Epping WJ (1987) Detection and estimation of neural connectivity based on crosscorrelation analysis. Biol Cybern 57(6):403–414 CrossRefPubMedGoogle Scholar
  28. Meyer C, van Vreeswijk C (2002 Feb) Temporal correlations in stochastic networks of spiking neurons. Neural Comput 14(2):369–404 CrossRefPubMedGoogle Scholar
  29. Moore GP, Segundo JP, Perkel DH, Levitan H (1970 Sep) Statistical signs of synaptic interaction in neurons. Biophys J 10(9):876–900 CrossRefPubMedGoogle Scholar
  30. Neven H, Aertsen A (1992) Rate coherence and event coherence in the visual cortex: a neuronal model of object recognition. Biol Cybern 67(4):309–322 CrossRefPubMedGoogle Scholar
  31. Nowak LG, Munk MH, Nelson JI, James AC, Bullier J (1995 Dec) Structural basis of cortical synchronization. I. Three types of interhemispheric coupling. J Neurophysiol 74(6):2379–2400 PubMedGoogle Scholar
  32. Perkel DH, Gerstein GL, Moore GP (1967 Jul) Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophys J 7(4):419–440 CrossRefPubMedGoogle Scholar
  33. Ponomarenko SA, Agrawal GP, Wolf E (2004) Energy spectrum of a nonstationary ensemble of pulses. Optics Lett 29:394–396 CrossRefGoogle Scholar
  34. Rosenberg JR, Halliday DM, Breeze P, Conway BA (1998 Aug 31) Identification of patterns of neuronal connectivity: partial spectra, partial coherence, and neuronal interactions. J Neurosci Methods 83(1):57–72 CrossRefPubMedGoogle Scholar
  35. Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586 CrossRefPubMedGoogle Scholar
  36. Stark E, Drori R, Abeles M (2006) Partial cross-correlation analysis resolves ambiguity in the encoding of multiple movement features. J Neurophysiol 95:1966–1975 CrossRefPubMedGoogle Scholar
  37. Staude B, Rotter S, Grün S (2008) Can spike coordination be differentiated from rate covariation?. Neural Comput 20:1973–1999 CrossRefPubMedGoogle Scholar
  38. Tomita M, Eggermon JJ (2005) Cross-correlation and joint spectro-temporal receptive field properties in auditory cortex. J Neorophysiol 93:378–392 CrossRefGoogle Scholar
  39. Toyama K, Kimura M, Tanaka K (1981 Aug) Organization of cat visual cortex as investigated by cross-correlation technique. J Neurophysiol 46(2):202–214 PubMedGoogle Scholar
  40. Valentine PA, Eggermont JJ (2004 Oct) Stimulus dependence of spectro-temporal receptive fields in cat primary auditory cortex. Hear Res 196(1–2):119–133 CrossRefPubMedGoogle Scholar
  41. Van Drongelen W (2007) Signal processing for neuroscientists. Academic Press, Burlington Google Scholar
  42. Van Stokkum IH, Johannesma PI, Eggermont JJ (1986) Representation of time-dependent correlation and recurrence time functions. A new method to analyse non-stationary point processes. Biol Cybern 55(1):17–24 CrossRefPubMedGoogle Scholar
  43. Tetzlaff T, Rotter S, Stark E, Abeles M, Aertsen A, Diesmann M (2008) Dependence of neuronal correlations on filter characteristics and marginal spike train statistics. Neural Comput 20(9):2133–2184 CrossRefPubMedGoogle Scholar
  44. Yang XW, Shamma SA (1990 May) Identification of connectivity in neural networks. Biophys J 57(5):987–999 CrossRefPubMedGoogle Scholar
  45. Voigt HF, Young ED (1990 Nov) Cross-correlation analysis of inhibitory interactions in dorsal cochlear nucleus. J Neurophysiol 64(5):1590–1610 PubMedGoogle Scholar
  46. Zhan Y, Halliday D, Jiang P, Liu X, Feng J (2006 Sep 30) Detecting time-dependent coherence between non-stationary electrophysiological signals—a combined statistical and time-frequency approach. J Neurosci Methods 156(12):322–332 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Physiology and Pharmacology, Department of PsychologyUniversity of CalgaryCalgaryCanada

Personalised recommendations