Estimating the Firing Rate

  • Shigeru Shinomoto
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI, volume 7)


Neuronal activity is measured by the number of stereotyped action potentials, called spikes, elicited in response to a stimulus or the behavioral conditions of an animal. Any nonparametric method for grasping the time-varying rate of spike firing contains a single parameter that controls the jaggedness of the estimated rate, such as the binsize of the time histogram or the bandwidth of the kernel smoother. In most neurophysiological studies, the parameter that determines the interpretation of neuronal activity has been selected subjectively by individual researchers. Recently, theories for objectively selecting the parameter have been developed. This chapter introduces the standard rate estimation tools, such as the peri-stimulus time histogram (PSTH), kernel density estimation, or Bayes estimation, and shows ways of selecting their parameters under the principles of minimizing the mean integrated squared error or maximizing the likelihood. We also sum up the methods in handy recipes that may be useful in practical data analysis.


Firing Rate Rate Estimation Spike Train Kernel Density Estimation Spike Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles M (1982) Quantification, smoothing, and confidence-limits for single-units histograms. J Neurosci Methods 5:317–325 CrossRefPubMedGoogle Scholar
  2. Abramson I (1982) On bandwidth variation in kernel estimates—a square root law. Ann Statist 10:1217–1223 CrossRefGoogle Scholar
  3. Adrian ED (1928) The basis of sensation: the action of the sense organs. Christophers, London Google Scholar
  4. Akaike H (1980) Likelihood and Bayes procedure. In: Bernardo JM, DeGroot MH, Lindley DV, Smith AFM (eds) Bayesian statistics. University Press, Valencia, p 143 Google Scholar
  5. Baker SN, Lemon RN (2000) Precise spatiotemporal repeating patterns in monkey primary and supplementary motor areas occur at chance levels. J Neurophysiol 84:1770–1780 PubMedGoogle Scholar
  6. Barbieri R, Quirk MC, Frank LM, Wilson MA, Brown EN (2001) Construction and analysis of non-Poisson stimulus-response models of neural spiking activity. J Neurosci Methods 105:25–37 CrossRefPubMedGoogle Scholar
  7. Brown EN, Frank LM, Tang D, Quirk MC, Wilson MA (1998) A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. J Neurosci 18:7411–7425 PubMedGoogle Scholar
  8. Carlin BP Louis TA (2000) Bayes and empirical bayes methods for data analysis, 2nd edn. Chapman and Hall, New York CrossRefGoogle Scholar
  9. Cherif S, Cullen KE, Galiana HL (2008) An improved method for the estimation of firing rate dynamics using an optimal digital filter. J Neurosci Methods 173:165–181 CrossRefPubMedGoogle Scholar
  10. Cox DR, Lewis PAW (1966) The statistical analysis of series of events. Wiley, New York Google Scholar
  11. Cunningham JP, Yu BM, Shenoy KV, Sahani M (2008) Inferring neural firing rates from spike trains using Gaussian processes. Adv Neural Inf Process Syst 20:329–336 Google Scholar
  12. Daley D, Vere-Jones D (2003) An introduction to the theory of point processes, vol. 1: Elementary theory and methods, 2nd edn. Springer-Verlag, New York Google Scholar
  13. Dayan P, Abbott L (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT Press, Cambridge Google Scholar
  14. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Statist Soc Ser B 39:1–38 Google Scholar
  15. DiMatteo I, Genovese CR, Kass RE (2001) Bayesian curve-fitting with free-knot splines. Biometrika 88:1055–1071 CrossRefGoogle Scholar
  16. Endres D, Oram M, Schindelin J, Földiák P (2008) Bayesian binning beats approximate alternatives: estimating peri-stimulus time histograms. Adv Neural Inf Process Syst 20:393–400 Google Scholar
  17. Gerstein GL, Kiang, NYS (1960) An approach to the quantitative analysis of electrophysiological data from single neurons. Biophys J 1:15–28 CrossRefPubMedGoogle Scholar
  18. Gerstein GL, Mandelbrot B (1964) Random walk models for the spike activity of a single neuron. Biophys J 4:41–68 CrossRefPubMedGoogle Scholar
  19. Good IJ (1965) The estimation of probabilities: an essay on modern Bayesian methods. MIT Press, Cambridge Google Scholar
  20. Johnson DH (1996) Point process models of single-neuron discharges. J Comput Neurosci 3:275–299 CrossRefPubMedGoogle Scholar
  21. Kass RE, Ventura V, Cai C (2003) Statistical smoothing of neuronal data. Network Comput Neural Syst 14:5–15 CrossRefGoogle Scholar
  22. Kass RE, Ventura V, Brown EN (2005) Statistical issues in the analysis of neuronal data. J Neurophysiol 94:8–25 CrossRefPubMedGoogle Scholar
  23. Kostal L, Lansky P (2006) Classification of stationary neuronal activity according to its information rate. Network Comput Neural Syst 17:193–210 CrossRefGoogle Scholar
  24. Koyama S, Shinomoto S (2004) Histogram bin-width selection for time-dependent point processes. J Phys A Math Theor 37:7255–7265 CrossRefGoogle Scholar
  25. Koyama S, Shinomoto S (2005) Empirical Bayes interpretations of random point events. J Phys A Math Theor 38:L531–L537 CrossRefGoogle Scholar
  26. Koyama S, Shimokawa T, Shinomoto S (2007) Phase transitions in the estimation of event rate: a path integral analysis. J Phys A Math Theor 40:F383–F390 CrossRefGoogle Scholar
  27. Koyama S, Paninski L (2009) Efficient computation of the maximum a posteriori path and parameter estimation in integrate-and-fire and more general state-space models. J Comput Neurosci doi: 10.1007/s10827-009-0179-x Google Scholar
  28. Kuffler SW, Fitzhugh R, Barlow HB (1957) Maintained activity in the cat’s retina in light and darkness. J Gen Physiol 40:683–702 CrossRefPubMedGoogle Scholar
  29. Loader CR (1999a) Bandwidth selection: classical or plug-in? Ann Statist 27:415–438 CrossRefGoogle Scholar
  30. Loader CR (1999b) Local regression and likelihood. Springer-Verlag, New York Google Scholar
  31. MacKay DJC (1992) Bayesian interpolation. Neural Comput 4:415–447 CrossRefGoogle Scholar
  32. Nawrot M, Aertsen A, Rotter S (1999) Single-trial estimation of neuronal firing rates: from single-neuron spike trains to population activity. J Neurosci Methods 94:81–92 CrossRefPubMedGoogle Scholar
  33. Nawrot MP, Boucsein C, Rodriguez-Molina V, Riehle A, Aertsen A, Rotter S (2008) Measurement of variability dynamics in cortical spike trains. J Neurosci Methods 169:374–390 CrossRefPubMedGoogle Scholar
  34. Nemenman I, Bialek W (2002) Occam factors and model-independent Bayesian learning of continuous distributions. Phys Rev E 65:026137 CrossRefGoogle Scholar
  35. Oram MW, Wiener MC, Lestienne R, Richmond BJ (1999) Stochastic nature of precisely timed spike patterns in visual system neuronal responses. J Neurophysiol 81:3021–3033 PubMedGoogle Scholar
  36. Parzen E (1962) Estimation of a probability density-function and mode. Ann Math Statist 33:1065 CrossRefGoogle Scholar
  37. Paulin MG (1992) Digital filters for firing rate estimation. Biol Cybern 66:525–531 CrossRefPubMedGoogle Scholar
  38. Paulin MG, Hoffman LF (2001) Optimal filtering rate estimation. Neural Networks 14:877–881 CrossRefPubMedGoogle Scholar
  39. Reich DS, Victor JD, Knight BW (1998) The power ratio and the interval map: spiking models and extracellular recordings. J Neurosci 18:10090–10104 PubMedGoogle Scholar
  40. Richmond BJ, Optican LM, Spitzer H (1990) Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. I. Stimulus-response relations. J Neurophysiol 64:351–369 PubMedGoogle Scholar
  41. Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W (1997) Spikes: exploring the neural code. MIT Press, Cambridge Google Scholar
  42. Rudemo M (1982) Empirical choice of histograms and kernel density estimators. Scand J Statist 9:65–78 Google Scholar
  43. Sain S, Scott D (1996) On locally adaptive density estimation. J Amer Statist Assoc 91:1525–1534 CrossRefGoogle Scholar
  44. Sain S, Scott D (2002) Zero-bias locally adaptive density estimators. Scand J Statist 29:441–460 CrossRefGoogle Scholar
  45. Shimazaki H, Shinomoto S (2007a) A method for selecting the bin size of a time histogram. Neural Comput 19:1503–1527 CrossRefPubMedGoogle Scholar
  46. Shimazaki H, Shinomoto S (2007b) Kernel width optimization in the spike-rate estimation. Budelli R, Caputi A, and Gomez L (eds) Neural coding 2007, pp 143–146 Google Scholar
  47. Shimazaki H, Shinomoto S (2010) Kernel bandwidth optimization in spike rate estimation. J Comput Neurosci, published on line. doi: 10.1007/s10827-009-0180-4
  48. Shimokawa T, Shinomoto S (2009) Estimating instantaneous irregularity of neuronal firing. Neural Comput 21:1931–1951 CrossRefPubMedGoogle Scholar
  49. Shinomoto S, Shima K, Tanji J (2003) Differences in spiking patterns among cortical neurons. Neural Comput 15:2823–2842 CrossRefPubMedGoogle Scholar
  50. Shinomoto S, Miyazaki Y, Tamura H, Fujita I (2005) Regional and laminar differences in in vivo firing patterns of primate cortical neurons. J Neurophysiol 94:567–575 CrossRefPubMedGoogle Scholar
  51. Shinomoto S, Kim H, Shimokawa T, Matsuno N, Funahashi S, Shima K, Fujita I, Tamura H, Doi T, Kawano K, Inaba N, Fukushima K, Kurkin S, Kurata K, Taira M, Tsutsui K, Komatsu H, Ogawa T, Koida K, Tanji J, Toyama K (2009) Relating neuronal firing patterns to functional differentiation of cerebral cortex. PLoS Comput Biol 5:e1000433 CrossRefPubMedGoogle Scholar
  52. Smith AC, Brown EN (2003) Estimating a state-space model from point process observations. Neural Comput 15:965–991 CrossRefPubMedGoogle Scholar
  53. Snyder D (1975) Random point processes. Wiley, New York Google Scholar
  54. Stein RB (1965) A theoretical analysis of neuronal variability. Biophys J 5:173–194 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Physics, Graduate School of ScienceKyoto UniversitySakyo-ku, KyotoJapan

Personalised recommendations