Population Coding

  • Stefano Panzeri
  • Fernando Montani
  • Giuseppe Notaro
  • Cesare Magri
  • Rasmus S. Peterson
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI, volume 7)


Population coding is the quantitative study of which algorithms or representations are used by the brain to combine together and evaluate the messages carried by different neurons. Here, we review an information-theory-based approach to population coding. We discuss how to quantify the information carried by a neural population and how to quantify the contribution of individual members of the population, or the interaction between them, to the overall information encoded by the considered group of neurons. We present examples of applications of this formalism to simultaneous recordings of multiple spike trains.


Mutual Information Spike Train Primary Visual Cortex Individual Neuron Noise Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott LF, Dayan P (1999) The effect of correlated variability on the accuracy of a population code. Neural Comput 11:91–101 CrossRefPubMedGoogle Scholar
  2. Averbeck BB, Latham PE, Pouget A (2006) Neural correlations, population coding and computation. Nat Rev Neurosci 7(5):358–366 CrossRefPubMedGoogle Scholar
  3. Barlow HB, Hill RM, Levick WR (1964) Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J Physiol (London) 173:377–407 Google Scholar
  4. Csicsvari J, Henze D, Jamieson B, Harris K, Sirota A, Bartho P, Wise K, Buzsaki G (2003) Massively parallel recording of unit and local field potentials with silicon-based electrodes. J Neurophysiol 90(2):1314–1323 CrossRefPubMedGoogle Scholar
  5. Darian-Smith I, Johnson KO, Dykes R (1973) Cold fiber population innervating palmar and digital skin of the monkey: responses to cooling pulses. J Neurophysiol 36(2):325–346 PubMedGoogle Scholar
  6. Engel AK, Singer W (2001) Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci 5(1):16–25 CrossRefPubMedGoogle Scholar
  7. Gawne T, Richmond BJ (1993) How independent are the messages carried by adjacent inferior temporal cortical neurons?. J Neurosci 13:2758–2771 PubMedGoogle Scholar
  8. Golledge HD, Panzeri S, Zheng F, Pola G, Scannell JW, Giannikopoulos DV, Mason RJ, Tovee MJ, Young MP (2003) Correlations, feature-binding and population coding in primary visual cortex. Neuroreport 14(7):1045–1050 CrossRefPubMedGoogle Scholar
  9. Hatsopoulos NG, Ojakangas C, Paninski L, Donoghue JP (1998) Information about movement direction obtained from synchronous activity of motor cortical neurons. Proc Natl Acad Sci 95(26):15706–15711 CrossRefPubMedGoogle Scholar
  10. Kayser C, Montemurro MA, Logothetis N, Panzeri S (2009) Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns. Neuron 61:597–608 CrossRefPubMedGoogle Scholar
  11. Kerr JN, Denk W (2008) Imaging in vivo: watching the brain in action. Nat Rev Neurosci 9:195–205 CrossRefPubMedGoogle Scholar
  12. Kohn A, Smith MA (2005) Stimulus dependence of neuronal correlation in primary visual cortex of the macaque. J Neurosci 25(14):3661–3673 CrossRefPubMedGoogle Scholar
  13. Latham PE, Nirenberg S (2005) Synergy, redundancy, and independence in population codes, revisited. J Neurosci 25(21):5195–5206 CrossRefPubMedGoogle Scholar
  14. Li C-L (1959) Synchronization of unit activity in the cerebral cortex. Science 129:783–784 CrossRefPubMedGoogle Scholar
  15. Magri C, Whittingstall K, Singh V, Logothetis NK, Panzeri S (2009) A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings. BMC Neurosci 10:81 CrossRefPubMedGoogle Scholar
  16. Mastronarde DN (1983) Correlated firing of cat retinal ganglion cells: spontaneously active input to x- and y-cells. J Neurophysiol 49:303–324 PubMedGoogle Scholar
  17. Montani F, Kohn A, Smith MA, Schultz SR (2007) The role of correlations in direction and contrast coding in the primary visual cortex. J Neurosci 27(9):2338–2348 CrossRefPubMedGoogle Scholar
  18. Nakahara S, Amari S (2002) Information geometric measures for neural spikes. Neural Comput 14:2269–2316 CrossRefPubMedGoogle Scholar
  19. Nirenberg S, Carcieri SM, Jacobs AL, Latham PE (2001) Retinal ganglion cells act largely as independent encoders. Nature 411:698–701 CrossRefPubMedGoogle Scholar
  20. Oram MW, Foldiak P, Perrett DI, Sengpiel F (1998) The ‘ideal homunculus’: decoding neural population signals. Trends Neurosci 21(6):259–265 CrossRefPubMedGoogle Scholar
  21. Panzeri S, Petroni F, Petersen RS, Diamond ME (2003) Decoding neuronal population activity in rat somatosensory cortex: role of columnar organization, cerebral cortex. Cereb Cortex 13(1):45–52 CrossRefPubMedGoogle Scholar
  22. Panzeri S, Schultz SR (2001) A unified approach to the study of temporal, correlational, and rate coding. Neural Comput 13:1311–1349 CrossRefPubMedGoogle Scholar
  23. Panzeri S, Schultz SR, Treves A, Rolls ET (1999) Correlations and the encoding of information in the nervous system. Proc R Soc Lond B Biol Sci 266:1001–1012 CrossRefGoogle Scholar
  24. Panzeri S, Senatore R, Montemurro MA, Petersen RS (2007) Correcting for the sampling bias problem in spike train information measures. J Neurophysiol 98:1064–1072 CrossRefPubMedGoogle Scholar
  25. Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spikes trains and stochastic point processes II. Simultaneous spikes trains. Biophys J 7:419–440 CrossRefPubMedGoogle Scholar
  26. Petersen RS, Panzeri S, Diamond ME (2001) Population coding of stimulus location in rat somatosensory cortex. Neuron 32:503–514 CrossRefPubMedGoogle Scholar
  27. Petersen RS, Panzeri S, Diamond ME (2002a) Population coding in somatosensory cortex. Curr Opin Neurobiol 12:441–447 CrossRefPubMedGoogle Scholar
  28. Petersen RS, Panzeri S, Diamond ME (2002b) The role of individual spikes and spike patterns in population coding of stimulus location in rat somatosensory cortex. Biosystems 67:187–193 CrossRefPubMedGoogle Scholar
  29. Pola G, Thiele A, Hoffmann KP, Panzeri S (2003) An exact method to quantify the information transmitted by different mechanisms of correlational coding. Network 14:35–60 CrossRefPubMedGoogle Scholar
  30. Quian Quiroga R, Panzeri S (2009) Extracting information from neural populations: information theory and decoding approaches. Nat Rev Neurosci 10:173–185 CrossRefPubMedGoogle Scholar
  31. Quian Quiroga R, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual representation by single neurons in the human brain. Nature 435:1102–1107 CrossRefPubMedGoogle Scholar
  32. Quian Quiroga R, Reddy L, Koch C, Fried I (2007) Decoding visual inputs from multiple neurons in the human temporal lobe. J Neurophysiol 98(4):1997–2007 CrossRefPubMedGoogle Scholar
  33. Reich DS, Mechler F, Victor JD (2001) Independent and redundant information in nearby cortical neurons. Science 294:2566–2568 CrossRefPubMedGoogle Scholar
  34. Rolls ET, Franco L, Aggelopoulos NC, Reece S (2003) An information theoretic approach to the contributions of the firing rates and the correlations between the firing of neurons. J Neurophysiol 89:2810–2822 CrossRefPubMedGoogle Scholar
  35. Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2(8):539–550 CrossRefPubMedGoogle Scholar
  36. Schneidman E, Bialek W, Berry MJI (2003) Synergy, redundancy, and independence in population codes. J Neurosci 23(37):11539–11553 PubMedGoogle Scholar
  37. Shadlen MN, Movshon JA (1999) Synchrony unbound: a critical evaluation of the temporal binding hypothesis. Neuron 24(67–77):111–125 Google Scholar
  38. Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation and information coding. J Neurosci 18:3870–3896 PubMedGoogle Scholar
  39. Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586 CrossRefPubMedGoogle Scholar
  40. Strong S, Koberle R, de Ruyter van Steveninck R, Bialek W (1998) Entropy and information in neural spike trains. Phys Rev Lett 80:197–200 CrossRefGoogle Scholar
  41. von der Malsburg C (1999) The what and why of binding: the modeler’s perspective. Neuron 24(1):95–104 CrossRefPubMedGoogle Scholar
  42. Zohary E, Shadlen M, Newsome W (1994) Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370:140–143 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Stefano Panzeri
    • 1
  • Fernando Montani
    • 1
  • Giuseppe Notaro
    • 1
  • Cesare Magri
    • 1
  • Rasmus S. Peterson
    • 2
  1. 1.Department of Robotics, Brain and Cognitive SciencesItalian Institute of TechnologyGenoaItaly
  2. 2.Faculty of Life SciencesUniversity of ManchesterManchesterUK

Personalised recommendations