Skip to main content

Controversies in Vascular Access Monitoring and Surveillance

  • Chapter
  • First Online:
Essentials of Percutaneous Dialysis Interventions

Abstract

In North America, there are over 350,000 patients receiving hemodialysis for end stage renal disease (ESRD) [1, 2]. Reliable vascular access performance is necessary to ensure adequate dialysis, yet creating and maintaining functional accesses is both challenging and costly. For example, in 2008, ESRD only represented approximately 1% of the Medicare population but accounted for 24 billion dollars or 6–7% of Medicare expenditures. Hemodialysis accounted for 19.4 billion dollars, with access placement and complications estimated to contribute approximately 15% [3]. Of note, the costs of managing access events have increased by up to 17% over the past year [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canadian Organ Replacement Register. CORR report – treatment of end-stage organ failure in Canada, 1999 to 2008. Ottawa, ON: CORR; 2010.

    Google Scholar 

  2. U.S. Renal Data System. USRDS 2009 annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States, National Institutes of Health, Fig. 6.4, Chap. 6. Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases; 2009. p. 273.

    Google Scholar 

  3. U.S. Renal Data System. USRDS 2010 annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States, National Institutes of Health. In: Costs of end-stage renal disease, vol. 2. Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases; 2010.

    Google Scholar 

  4. Nosher JL. Death, taxes, and vascular access dysfunction. Semin Dial. 1991;4:67–8.

    Article  Google Scholar 

  5. NIoHNaTNIoDaDaKD. Identification of factors associated with failure of arteriovenous fistulas to mature in hemodialysis patients (U01). Vol. 2010. Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases; 2007.

    Google Scholar 

  6. Lok CE, Allon M, Donnelly S, Dorval M, et al. Design of the fish oil inhibition of stenosis in hemodialysis grafts (FISH) study. Clin Trials. 2007;4:357–67.

    Article  PubMed  Google Scholar 

  7. Conte MS, Nugent HM, Gaccione P, Guleria I, et al. Multicenter phase I/II trial of the safety of allogeneic endothelial cell implants after the creation of arteriovenous access for hemodialysis use: the V-HEALTH study. J Vasc Surg 2009; 50: 1359–1368 e1351.

    Google Scholar 

  8. Lee T, Roy-Chaudhury P. Advances and new frontiers in the pathophysiology of venous neointimal hyperplasia and dialysis access stenosis. Adv Chronic Kidney Dis. 2009;16:329–38.

    Article  PubMed  Google Scholar 

  9. Gimbrone Jr MA. Vascular endothelium: an integrator of pathophysiologic stimuli in atherosclerosis. Am J Cardiol. 1995;75:67B–70.

    Article  PubMed  CAS  Google Scholar 

  10. Roy-Chaudhury P, Kelly BS, Miller MA, Reaves A, et al. Venous neointimal hyperplasia in polytetrafluoroethylene dialysis grafts. Kidney Int. 2001;59:2325–34.

    PubMed  CAS  Google Scholar 

  11. Roy-Chaudhury P, Wang Y, Krishnamoorthy M, Zhang J, et al. Cellular phenotypes in human stenotic lesions from haemodialysis vascular access. Nephrol Dial Transplant. 2009;24:2786–91.

    Article  PubMed  CAS  Google Scholar 

  12. Anderson J, Abbuhl M, Hering T, Johnston K. Immunohistochemical identification of components in the healing response of human vascular grafts. ASAIO J. 1985;8:79–85.

    Google Scholar 

  13. Swedberg SH, Brown BG, Sigley R, Wight TN, et al. Intimal fibromuscular hyperplasia at the venous anastomosis of PTFE grafts in hemodialysis patients. Clinical, immunocytochemical, light and electron microscopic assessment. Circulation. 1989;80:1726–36.

    Article  PubMed  CAS  Google Scholar 

  14. Hehrlein C. How do AV fistulae lose function? The roles of haemodynamics, vascular remodelling, and intimal hyperplasia. Nephrol Dial Transplant. 1995;10:1287–90.

    PubMed  CAS  Google Scholar 

  15. Golden MA, Au YP, Kenagy RD, Clowes AW. Growth factor gene expression by intimal cells in healing polytetrafluoroethylene grafts. J Vasc Surg. 1990;11:580–5.

    PubMed  CAS  Google Scholar 

  16. Porter KE, Olojugba DH, Masood I, Pemberton M, et al. Endothelin-B receptors mediate intimal hyperplasia in an organ culture of human saphenous vein. J Vasc Surg. 1998;28:695–701.

    Article  PubMed  CAS  Google Scholar 

  17. Roy-Chaudhury P, Arend L, Zhang J, Krishnamoorthy M, et al. Neointimal hyperplasia in early arteriovenous fistula failure. Am J Kidney Dis. 2007;50:782–90.

    Article  PubMed  Google Scholar 

  18. Chang CJ, Ko PJ, Hsu LA, Ko YS, et al. Highly increased cell proliferation activity in the restenotic hemodialysis vascular access after percutaneous transluminal angioplasty: implication in prevention of restenosis. Am J Kidney Dis. 2004;43:74–84.

    Article  PubMed  CAS  Google Scholar 

  19. Wang Y, Krishnamoorthy M, Banerjee R, Zhang J, et al. Venous stenosis in a pig arteriovenous fistula model – anatomy, mechanisms and cellular phenotypes. Nephrol Dial Transplant. 2008;23:525–33.

    Article  PubMed  Google Scholar 

  20. Ombrellaro MP, Stevens SL, Schaeffer DO, Freeman MB, et al. The role of platelet-derived growth factor in intraluminal stented graft healing. J Am Coll Surg. 1997;184:49–57.

    PubMed  CAS  Google Scholar 

  21. Faries PL, Marin ML, Veith FJ, Ramirez JA, et al. Immunolocalization and temporal distribution of cytokine expression during the development of vein graft intimal hyperplasia in an experimental model. J Vasc Surg. 1996;24:463–71.

    Article  PubMed  CAS  Google Scholar 

  22. Weiss MF, Scivittaro V, Anderson JM. Oxidative stress and increased expression of growth factors in lesions of failed hemodialysis access. Am J Kidney Dis. 2001;37:970–80.

    Article  PubMed  CAS  Google Scholar 

  23. Roselaar SE, Nazhat NB, Winyard PG, Jones P, et al. Detection of oxidants in uremic plasma by electron spin resonance spectroscopy. Kidney Int. 1995;48:199–206.

    Article  PubMed  CAS  Google Scholar 

  24. Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, Nguyen-Khoa T, et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996;49:1304–13.

    Article  PubMed  CAS  Google Scholar 

  25. Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 2002;62:1524–38.

    Article  PubMed  CAS  Google Scholar 

  26. Descamps-Latscha B, Goldfarb B, Nguyen AT, Landais P, et al. Establishing the relationship between complement activation and stimulation of phagocyte oxidative metabolism in hemodialyzed patients: a randomized prospective study. Nephron. 1991;59:279–85.

    Article  PubMed  CAS  Google Scholar 

  27. Zima T, Haragsim L, Stipek S, Bartova V, et al. Lipid peroxidation on dialysis membranes. Biochem Mol Biol Int. 1993;29:531–7.

    PubMed  CAS  Google Scholar 

  28. Toborek M, Wasik T, Drozdz M, Klin M, et al. Effect of hemodialysis on lipid peroxidation and antioxidant system in patients with chronic renal failure. Metabolism. 1992;41:1229–32.

    Article  PubMed  CAS  Google Scholar 

  29. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol. 1996;271:C1424–37.

    PubMed  CAS  Google Scholar 

  30. Ruef J, Peter K, Nordt TK, Runge MS, et al. Oxidative stress and atherosclerosis: its relationship to growth factors, thrombus formation and therapeutic approaches. Thromb Haemost. 1999;82 Suppl 1:32–7.

    PubMed  Google Scholar 

  31. Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 2000;86:494–501.

    Article  PubMed  CAS  Google Scholar 

  32. Stracke S, Konner K, Kostlin I, Friedl R, et al. Increased expression of TGF-beta1 and IGF-I in inflammatory stenotic lesions of hemodialysis fistulas. Kidney Int. 2002;61:1011–9.

    Article  PubMed  CAS  Google Scholar 

  33. Aviram M. LDL-platelet inteaction under oxidative stress induces macrophage foam cell formation. Thromb Haemost. 1997;74(1):560–4.

    Google Scholar 

  34. Fukai T, Folz RJ, Landmesser U, Harrison DG. Extracellular superoxide dismutase and cardiovascular disease. Cardiovasc Res. 2002;55:239–49.

    Article  PubMed  CAS  Google Scholar 

  35. Berk BC. Redox signals that regulate the vascular response to injury. Thromb Haemost. 1999;82:810–7.

    PubMed  CAS  Google Scholar 

  36. Huynh TT, Davies MG, Trovato MJ, Barber L, et al. Reduction of lipid peroxidation with intraoperative superoxide dismutase treatment decreases intimal hyperplasia in experimental vein grafts. J Surg Res. 1999;84:223–32.

    Article  PubMed  CAS  Google Scholar 

  37. Lok CE, Allon A, Donnelly S, Dorval M, Hemmelgarn B, Moist L, et al. Design of the fish oil inhibition of stenosis in hemodialysis (FISH) Graft Study. Clin Trials. 2007;4(4):357–67.

    Article  PubMed  Google Scholar 

  38. Roy-Chaudhury P, Sukhatme VP, Cheung AK. Hemodialysis vascular access dysfunction: a cellular and molecular viewpoint. J Am Soc Nephrol. 2006;17:1112–27.

    Article  PubMed  Google Scholar 

  39. Dixon BS. Why don’t fistulas mature? Kidney Int. 2006;70:1413–22.

    Article  PubMed  CAS  Google Scholar 

  40. Dember LM, Beck GJ, Allon M, Delmez JA, et al. Effect of clopidogrel on early failure of arteriovenous fistulas for hemodialysis: a randomized controlled trial. JAMA. 2008;299:2164–71.

    Article  PubMed  CAS  Google Scholar 

  41. Dixon BS, Beck GJ, Vazquez MA, Greenberg A, et al. The effect of dipyridamole plus aspirin on hemodialysis graft patency. N Engl J Med. 2009;360(21):2191–201.

    Article  PubMed  CAS  Google Scholar 

  42. Lok CE. Antiplatelet therapy and vascular-access patency. N Engl J Med. 2009;360:2240–2.

    Article  PubMed  CAS  Google Scholar 

  43. Schwab SJ, Raymond JR, Saeed M, Newman GE, et al. Prevention of hemodialysis fistula thrombosis. Early detection of venous stenoses. Kidney Int. 1989;36:707–11.

    Article  PubMed  CAS  Google Scholar 

  44. Besarab A, Sullivan KL, Ross RP, Moritz MJ. Utility of intra-access pressure monitoring in detecting and correcting venous outlet stenoses prior to thrombosis. Kidney Int. 1995;47:1364–73.

    Article  PubMed  CAS  Google Scholar 

  45. NKF-DOQI. Clinical practice guidelines for vascular access. National Kidney Foundation-Dialysis Outcomes Quality Initiative. Am J Kidney Dis. 1997;30:S150–91.

    Google Scholar 

  46. NKF-DOQI. Clinical practice guidelines for vascular access. Am J Kidney Dis. 2006;48:S176–247.

    Article  Google Scholar 

  47. Hulley SB, Cummings SR, Browner WS, Grady D, Hearst N, Newman TB, editors. Designing clinical research. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 143–55.

    Google Scholar 

  48. Lok CE, Moist. LM. Challenges for randomized controlled trials in nephrology: illustrations in vascular access science and care. J Nephrol. 2007;20:632–45.

    PubMed  CAS  Google Scholar 

  49. Gordis L. Epidemiology. 2nd ed. Philadelphia: W.B. Saunders; 2000. p. 100–9.

    Google Scholar 

  50. Besarab A. Access monitoring is worthwhile and valuable. Blood Purif. 2006;24:77–89.

    Article  PubMed  Google Scholar 

  51. Paulson WD, Work J. Controversial vascular access surveillance mandate. Semin Dial. 2010;23:92–4.

    Article  PubMed  Google Scholar 

  52. Abreo K, Allon M, Asif A, Atray N, et al. Which direction is right for vascular access surveillance? A debate. Nephrol News Issues. 2010;24:30, 32, 34.

    Google Scholar 

  53. Paulson WD. Access monitoring does not really improve outcomes. Blood Purif. 2005;23:50–6.

    Article  PubMed  Google Scholar 

  54. Sands JJ. Vascular access monitoring improves outcomes. Blood Purif. 2005;23:45–9.

    Article  PubMed  Google Scholar 

  55. White JJ, Bander SJ, Schwab SJ, Churchill DN, et al. Is percutaneous transluminal angioplasty an effective intervention for arteriovenous graft stenosis? Semin Dial. 2005;18:190–202.

    Article  PubMed  Google Scholar 

  56. Dember LM, Holmberg EF, Kaufman JS. Value of static venous pressure for predicting arteriovenous graft thrombosis. Kidney Int. 2002;61:1899–904.

    Article  PubMed  Google Scholar 

  57. McDougal G, Agarwal R. Clinical performance characteristics of hemodialysis graft monitoring. Kidney Int. 2001;60:762–6.

    Article  PubMed  CAS  Google Scholar 

  58. Paulson WD, Ram SJ, Birk CG, Work J. Does blood flow accurately predict thrombosis or failure of hemodialysis synthetic grafts? A meta-analysis. Am J Kidney Dis. 1999;34:478–85.

    Article  PubMed  CAS  Google Scholar 

  59. Paulson WD, Ram SJ, Birk CG, Zapczynski M, et al. Accuracy of decrease in blood flow in predicting hemodialysis graft thrombosis. Am J Kidney Dis. 2000;35:1089–95.

    Article  PubMed  CAS  Google Scholar 

  60. Ram SJ, Nassar R, Work J, Abreo K, et al. Risk of hemodialysis graft thrombosis: analysis of monthly flow surveillance. Am J Kidney Dis. 2008;52:930–8.

    Article  PubMed  Google Scholar 

  61. White JJ, Ram SJ, Jones SA, Schwab SJ, et al. Influence of luminal diameters on flow surveillance of hemodialysis grafts: insights from a mathematical model. Clin J Am Soc Nephrol. 2006;1:972–8.

    Article  PubMed  Google Scholar 

  62. Kheda MF, Brenner LE, Patel MJ, Wynn JJ, et al. Influence of arterial elasticity and vessel dilatation on arteriovenous fistula maturation: a prospective cohort study. Nephrol Dial Transplant. 2010;25:525–31.

    Article  PubMed  Google Scholar 

  63. Paulson WD, Asif A, Salman LH, Jones SA. Mathematical model of artriovenous fistula (AVF): a powerful method to improve understanding of the hemodynamics of AVF failure (abstract). J Am Soc Nephrol. 2010;21:248A.

    Google Scholar 

  64. White JJ, Jones SA, Ram SJ, Schwab SJ, et al. Mathematical model demonstrates influence of luminal diameters on venous pressure surveillance. Clin J Am Soc Nephrol. 2007;2:681–7.

    Article  PubMed  Google Scholar 

  65. Atray NK, Ram SJ, Work J, Eason JM, et al. A longitudinal study of hemodialysis graft stenosis: role of progressive stenosis in thrombosis (abstract). J Am Soc Nephrol. 2001;12:281A.

    Google Scholar 

  66. DeSoto DJ, Ram SJ, Faiyaz R, Birk CG, et al. Hemodynamic reproducibility during blood flow measurements of hemodialysis synthetic grafts. Am J Kidney Dis. 2001;37:790–6.

    Article  PubMed  CAS  Google Scholar 

  67. Ram SJ, Nassar R, Sharaf R, Magnasco A, et al. Thresholds for significant decrease in hemodialysis access blood flow. Semin Dial. 2005;18:558–64.

    Article  PubMed  Google Scholar 

  68. Schneditz D, Fan Z, Kaufman A, Levin NW. Stability of access resistance during haemodialysis. Nephrol Dial Transplant. 1998;13:739–44.

    Article  PubMed  CAS  Google Scholar 

  69. Rehman SU, Pupim LB, Shyr Y, Hakim R, et al. Intradialytic serial vascular access flow measurements. Am J Kidney Dis. 1999;34:471–7.

    Article  PubMed  CAS  Google Scholar 

  70. Agharazii M, Clouatre Y, Nolin L, Leblanc M. Variation of intra-access flow early and late into hemodialysis. ASAIO J. 2000;46:452–5.

    Article  PubMed  CAS  Google Scholar 

  71. Paulson WD, Ram SJ, Faiyaz R, Caldito GC, et al. Association between blood pressure, ultrafiltration, and hemodialysis graft thrombosis: a multivariable logistic regression analysis. Am J Kidney Dis. 2002;40:769–76.

    Article  PubMed  Google Scholar 

  72. Zasuwa G, Frinak S, Besarab A, Peterson E, et al. Automated intravascular access pressure surveillance reduces thrombosis rates. Semin Dial. 2010;23:527–35.

    Article  PubMed  Google Scholar 

  73. Dossabhoy NR, Ram SJ, Nassar R, Work J, et al. Stenosis surveillance of hemodialysis grafts by duplex ultrasound reduces hospitalizations and cost of care. Semin Dial. 2005;18:550–7.

    Article  PubMed  Google Scholar 

  74. Depner TA, Krivitski NM. Clinical measurement of blood flow in hemodialysis access fistulae and grafts by ultrasound dilution. ASAIO J. 1995;41:M745–9.

    Article  PubMed  CAS  Google Scholar 

  75. Krivitski NM. Theory and validation of access flow measurement by dilution technique during hemodialysis. Kidney Int. 1995;48:244–50.

    Article  PubMed  CAS  Google Scholar 

  76. Krivitski NM, MacGibbon D, Gleed RD, Dobson A. Accuracy of dilution techniques for access flow measurement during hemodialysis. Am J Kidney Dis. 1998;31:502–8.

    Article  PubMed  CAS  Google Scholar 

  77. Polkinghorne K. The CARI guidelines. Vascular access surveillance. Nephrology (Carlton). 2008;13 Suppl 2:S1–11.

    Article  Google Scholar 

  78. Bos C, Smits JH, Zijistra JJ, Blankestijn PJ, et al. Underestimation of access flow by ultrasound dilution flow measurements. Phys Med Biol. 2002;47:481–9.

    Article  PubMed  Google Scholar 

  79. Sands J, Glidden D, Jacavage W, Jones B. Difference between delivered and prescribed blood flow in hemodialysis. ASAIO J. 1996;42:M717–9.

    Article  PubMed  CAS  Google Scholar 

  80. Tonelli M, James M, Wiebe N, Jindal K, et al. Ultrasound monitoring to detect access stenosis in hemodialysis patients: a systematic review. Am J Kidney Dis. 2008;51:630–40.

    Article  PubMed  Google Scholar 

  81. Allon M, Robbin ML. Hemodialysis vascular access monitoring: current concepts. Hemodial Int. 2009;13:153–62.

    Article  PubMed  Google Scholar 

  82. Paulson WD, White JJ. Should arteriovenous fistulas and synthetic grafts undergo surveillance with pre-emptive correction of stenosis? Nat Clin Pract Nephrol. 2008;4:480–1.

    Article  PubMed  Google Scholar 

  83. Levit RD, Cohen RM, Kwak A, Shlansky-Goldberg RD, et al. Asymptomatic central venous stenosis in hemodialysis patients. Radiology. 2006;238:1051–6.

    Article  PubMed  Google Scholar 

  84. Moist LM, Churchill DN, House AA, Millward SF, et al. Regular monitoring of access flow compared with monitoring of venous pressure fails to improve graft survival. J Am Soc Nephrol. 2003;14:2645–53.

    Article  PubMed  Google Scholar 

  85. Tessitore N, Bedogna V, Poli A, Mantovani W, et al. Adding access blood flow surveillance to clinical monitoring reduces thrombosis rates and costs, and improves fistula patency in the short term: a controlled cohort study. Nephrol Dial Transplant. 2008;23:3578–84.

    Article  PubMed  Google Scholar 

  86. Ram SJ, Nassar R, Work J, Eason JM, et al. Stenosis surveillance of hemodialysis grafts by Duplex Ultrasound reduces hospitalizations and cost of care. Semin Dial. 2005;18:550–7.

    Article  PubMed  Google Scholar 

  87. Kaegi A, Pineo GF, Shimizu A, Trivedi H, et al. Arteriovenous-shunt thrombosis. Prevention by sulfinpyrazone. N Engl J Med. 1974;290:304–6.

    Article  PubMed  CAS  Google Scholar 

  88. Harter HR, Burch JW, Majerus PW, Stanford N, et al. Prevention of thrombosis in patients on hemodialysis by low-dose aspirin. N Engl J Med. 1979;301:577–9.

    Article  PubMed  CAS  Google Scholar 

  89. Kobayashi K, Maeda K, Koshikawa S, Kawaguchi Y, et al. Antithrombotic therapy with ticlopidine in chronic renal failure patients on maintenance hemodialysis – a multicenter collaborative double blind study. Thromb Res. 1980;20:255–61.

    Article  PubMed  CAS  Google Scholar 

  90. Andrassy K, Malluche H, Bornefeld H, Comberg M, et al. Prevention of p.o. clotting of av. cimino fistulae with acetylsalicyl acid. Results of a prospective double blind study. Klin Wochenschr. 1974;52:348–9.

    Article  PubMed  CAS  Google Scholar 

  91. Grontoft KC, Mulec H, Gutierrez A, Olander R. Thromboprophylactic effect of ticlopidine in arteriovenous fistulas for haemodialysis. Scand J Urol Nephrol. 1985;19:55–7.

    Article  PubMed  CAS  Google Scholar 

  92. Sreedhara R, Himmelfarb J, Lazarus JM, Hakim RM. Anti-platelet therapy in graft thrombosis: results of a prospective, randomized, double-blind study. Kidney Int. 1994;45:1477–83.

    Article  PubMed  CAS  Google Scholar 

  93. Crowther MA, Clase CM, Margetts PJ, Julian J, et al. Low-intensity warfarin is ineffective for the prevention of PTFE graft failure in patients on hemodialysis: a randomized controlled trial. J Am Soc Nephrol. 2002;13:2331–7.

    Article  PubMed  CAS  Google Scholar 

  94. Kaufman JS, O’Connor TZ, Zhang JH, Cronin RE, et al. Randomized controlled trial of clopidogrel plus aspirin to prevent hemodialysis access graft thrombosis. J Am Soc Nephrol. 2003;14:2313–21.

    Article  PubMed  CAS  Google Scholar 

  95. Schmitz PG, McCloud LK, Reikes ST, Leonard CL, et al. Prophylaxis of hemodialysis graft thrombosis with fish oil: double-blind, randomized, prospective trial. J Am Soc Nephrol. 2002;13:184–90.

    Article  PubMed  CAS  Google Scholar 

  96. Lumsden AB, MacDonald MJ, Kikeri D, Cotsonis GA, et al. Prophylactic balloon angioplasty fails to prolong the patency of expanded polytetrafluoroethylene arteriovenous grafts: results of a prospective randomized study. J Vasc Surg. 1997;26:382–90; discussion 390–382.

    Article  PubMed  CAS  Google Scholar 

  97. Ram SJ, Work J, Caldito GC, Eason JM, et al. A randomized controlled trial of blood flow and stenosis surveillance of hemodialysis grafts. Kidney Int. 2003;64:272–80.

    Article  PubMed  Google Scholar 

  98. Dember LM, Holmberg EF, Kaufman JS. Randomized controlled trial of prophylactic repair of hemodialysis arteriovenous graft stenosis. Kidney Int. 2004;66:390–8.

    Article  PubMed  Google Scholar 

  99. Malik J, Slavikova M, Svobodova J, Tuka V. Regular ultrasonographic screening significantly prolongs patency of PTFE grafts. Kidney Int. 2005;67:1554–8.

    Article  PubMed  Google Scholar 

  100. Robbin ML, Oser RF, Lee JY, Heudebert GR, et al. Randomized comparison of ultrasound surveillance and clinical monitoring on arteriovenous graft outcomes. Kidney Int. 2006;69:730–5.

    Article  PubMed  CAS  Google Scholar 

  101. Tessitore N, Mansueto G, Bedogna V, Lipari G, et al. A prospective controlled trial on effect of percutaneous transluminal angioplasty on functioning arteriovenous fistulae survival. J Am Soc Nephrol. 2003;14:1623–7.

    Article  PubMed  Google Scholar 

  102. Polkinghorne KR, Lau KK, Saunder A, Atkins RC, et al. Does monthly native arteriovenous fistula blood-flow surveillance detect significant stenosis–a randomized controlled trial. Nephrol Dial Transplant. 2006;21:2498–506.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William D. Paulson MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Paulson, W.D., Moist, L., Lok, C.E. (2011). Controversies in Vascular Access Monitoring and Surveillance. In: Rajan, D. (eds) Essentials of Percutaneous Dialysis Interventions. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5657-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5657-6_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5656-9

  • Online ISBN: 978-1-4419-5657-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics