Ecological Niche Modeling as a Tool for Understanding Distributions and Interactions of Vectors, Hosts, and Etiologic Agents of Chagas Disease

  • Jane Costa
  • A. Townsend Peterson
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 710)


Chagas disease, or American Trypanosomiasis, is a tropical parasitic disease caused by the flagellate protozoan Trypanosoma cruzi, which is in turn transmitted by blood-sucking insects of the subfamily Triatominae (family Reduviidae). Because no drugs or vaccines are available to cure Chagas disease in its chronic phase, vectorial control (i.e., insecticide spraying) constitutes the principal means by which to impair Chagas disease transmission. Environmental and social factors have caused changes in the epidemiology of this disease—it was originally restricted to Latin America, but is now becoming a global heath concern in non-endemic areas as a consequence of human migrations. In Brazil, despite the fact that the most effective vector has been controlled, other triatomine species infest and colonize domiciliary habitats and can transmit the pathogen. As a consequence, Chagas disease transmission continues: the prevalence of the disease remains at ∼12 million people, with ∼200,000 new cases per year in 15 countries of Latin America, making control actions still necessary. Understanding the environmental requirements and geographic distributions of vectors is key to guiding control measures, and understanding better epidemiologic aspects of the disease. Ecologic niche modeling is a relatively new tool that permits such insights—as a consequence, here, we present an overview of insights gained using this approach in understanding of Chagas disease.


Niche Modeling Marburg Virus American Trypanosomiasis Potential Distributional Area Triatomine Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Vanessa Lima Neiva for editing the references and Heloisa Diniz, Serviço de Produção e Tratamento de Imagens do Instituto Owaldo Cruz, for editing the figures and assistance in the preparation of the plates. CNPq for support.


  1. Almeida CE, Vinhaes MC, Almeida JR, Silveira AC, Costa J (2000) Monitoring the domiciliary and peridomiciliary invasion process of Triatoma rubrovaria in the state of Rio Grande do Sul, Brazil. Mem Inst Oswaldo Cruz 95:761–768PubMedGoogle Scholar
  2. Almeida CE, Folly-Ramos E, Peterson AT, Lima-Neiva V, Gumiel M, Duarte R, Lima MM, Locks M, Beltrão M, Costa J (2009) Could Triatoma sherlocki be vectoring Chagas disease in small mining communities in Bahia, Brazil? Med Vet Entomol 23:410–417PubMedCrossRefGoogle Scholar
  3. Batista TA, Gurgel-Gonçalves R (2009) Ecological niche modelling and differentiation between Rhodnius neglectus Lent, 1954 and Rhodnius nasutus Stål, 1859 (Hemiptera: Reduviidae: Triatominae) in Brazil. Mem Inst Oswaldo Cruz 104:1165–1170PubMedCrossRefGoogle Scholar
  4. Beard CB, Pye G, Steurer FJ, Salinas Y, Campman R, Peterson AT, Ramsey JM, Wirtz RA, Robinson LE (2003) Chagas disease in a domestic transmission cycle in southern Texas, USA. Emerg Infect Dis 9:103–105PubMedGoogle Scholar
  5. Briceno-Leon R, Galvan MJ (2007) The social determinants of Chagas disease and the transformations of Latin America. Mem Inst Oswaldo Cruz 102:109–112PubMedCrossRefGoogle Scholar
  6. Chagas C (1909) Nova tripanozomiaze humana: estudos sobre a morfologia e o ciclo evolutivo do Schizotrypanum cruzi n. gen. n. sp., agente etiologico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz 1:159–218CrossRefGoogle Scholar
  7. Costa J, Felix M (2007) Triatoma juazeirensis sp. nov. from the state of Bahia, northeastern Brazil (Hemiptera:Reduviidae: Triatominae). Mem Inst Oswaldo Cruz 102:87–90PubMedCrossRefGoogle Scholar
  8. Costa J, Lorenzo M (2009) Biology, diversity and strategies for the monitoring and control of triatomines – Chagas disease vectors. Mem Inst Oswaldo Cruz 104(suppl):46–51PubMedGoogle Scholar
  9. Costa J, Barth OM, Marchon-Silva V, Almeida CE, Freitas-Sibajev MG, Panzera F (1997a) Morphological studies on the Triatoma brasiliensis Neiva, 1911 (Hemiptera, Reduviidae, Triatominae) – genital structures and eggs of different chromatic forms. Mem Inst Oswaldo Cruz 92:493–498CrossRefGoogle Scholar
  10. Costa J, Freitas-Sibajev MG, Marchon-Silva V, Pires MQ, Pacheco R (1997b) Isoenzymes detect variation in populations of Triatoma brasiliensis (Hemiptera–Reduviidae–Triatominae). Mem Inst Oswaldo Cruz 92:459–464PubMedCrossRefGoogle Scholar
  11. Costa J, Peterson AT, Beard CB (2002) Ecologic niche modeling and differentiation of populations of Triatoma brasiliensis Neiva, 1911, the most important Chagas disease vector in northeastern Brazil (Hemiptera, Reduviidae, Triatominae). Am J Trop Med Hyg 67:516–520PubMedGoogle Scholar
  12. Costa J, Almeida CE, Dotson EM, Lins A, Vinhaes M, Silveira AC, Beard CB (2003) The epidemiologic importance of Triatoma brasiliensis as a Chagas disease vector in Brazil: a revision of domiciliary captures during 1993–1999. Mem Inst Oswaldo Cruz 98:443–449PubMedCrossRefGoogle Scholar
  13. Costa J, Argolo AM, Felix M (2006) Redescription of Triatoma melanica Neiva & Lent, 1941, new status (Hemiptera: Reduviidae: Triatominae). Zootaxa 1385:47–52Google Scholar
  14. Costa J, Peterson AT, Dujardin JP (2009) Morphological evidence suggests homoploid hybridization as a possible mode of speciation in the Triatominae (Hemiptera: Heteroptera: Reduviidae). Infect Genet Evol 9:263–270PubMedCrossRefGoogle Scholar
  15. Costa J, Dornak L, Almeida CE, Peterson TA (2010) Fine scale predictions on T. brasiliensis complex. Angean conferences series, 52:55. I International conference on model host, Crete, GreeceGoogle Scholar
  16. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettman F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton J, Peterson AT, Phillips SJ, Richardson KS, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  17. Galvão C, Carcavallo R, Rocha DS, Jurberg J (2003) A checklist of the current valid species of the subfamily Triatominae Jeannel, 1919 (Hemiptera: Reduviidae) and their geografical distribution with nomenclatural and taxonomic notes. Zootaxa 202:1–36Google Scholar
  18. Grinnell J (1917) Field tests of theories concerning distributional control. Am Naturalist 51:115–128CrossRefGoogle Scholar
  19. Guhl F (2007) Chagas disease in Andean countries. Mem do Inst Oswaldo Cruz 102(suppl 1):1–9Google Scholar
  20. Ibarra-Cerdeña CN, Sánchez-Cordero V, Peterson AT, Ramsey JM (2009) Ecology of North American Triatominae. Acta Trop 110:178–186PubMedCrossRefGoogle Scholar
  21. Lash RL, Brunsell N, Peterson AT (2008) Spatiotemporal environmental triggers of Ebola and Marburg virus transmission. GeoCarto Int 23:451–466CrossRefGoogle Scholar
  22. Lent H (1942) Estudos sobre os triatomíneos do estado do Rio Grande do Sul, com descrição de uma espécie nova. Rev Bras Biol 2:219–231Google Scholar
  23. Lent H, Wygodzinsky P (1979) Revision of the Triatominae (Hemiptera: Reduviidae) and their significance as vector of Chagas disease. Bull Am Mus Nat Hist 163:123–520Google Scholar
  24. López-Cárdenas J, Gonzalez-Bravo FE, Salazar-Schettino PM, Gallaga-Solorzano JC, Ramírez-Barba E, Martínez-Méndez J, Sänchez-Cordero V, Peterson AT, Ramsey JM (2005) Fine-scale predictions of distributions of Chagas disease vectors in the state of Guanajuato, Mexico. J Med Entomol 42:1068–1081PubMedCrossRefGoogle Scholar
  25. Mendonça VJ, Silva MTA, Araújo RF, Martins Júnior J, Bacci Júnior M, Almeida CE, Costa J, Graminha MAS, Cicarelli RMB, Rosa JA (2009) Phylogeny of Triatoma sherlocki (Hemiptera: Reduviidae: Triatominae) inferred from two mitochondrial genes suggests its location within the Triatoma brasiliensis complex. Am J Trop Med Hyg 81:858–864PubMedCrossRefGoogle Scholar
  26. Monteiro FA, Donnelly MJ, Beard CB, Costa J (2004) Nested clade and phylogeographic analyses of the Chagas disease vector Triatoma brasiliensis in northeast Brazil. Mol Phylogenet Evol 32:46–56PubMedCrossRefGoogle Scholar
  27. Morel CM, Lazdins J (2003) Chagas disease. Nat Rev Microbiol 1:14–15PubMedCrossRefGoogle Scholar
  28. Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. Q Rev Biol 78:419–433PubMedCrossRefGoogle Scholar
  29. Peterson AT (2006a) Ecological niche modeling and spatial patterns of disease transmission. Emerg Infect Dis 12:1822–1826PubMedCrossRefGoogle Scholar
  30. Peterson AT (2006b) Uses and requirements of ecological niche models and related distributional models. Biodiv Inf 3:59–72Google Scholar
  31. Peterson AT (2007) Ecological niche modelling and understanding the geography of disease transmission. Vet Ital 43:393–400PubMedGoogle Scholar
  32. Peterson AT (2008a) Biogeography of diseases: a framework for analysis. Naturwissenschaften 45:483–491CrossRefGoogle Scholar
  33. Peterson AT (2008b) Improving methods for reporting spatial epidemiologic data. Emerg Infect Dis 14:1335–1337PubMedCrossRefGoogle Scholar
  34. Peterson AT, Shaw JJ (2003) Lutzomyia vectors for cutaneous leishmaniasis in southern Brazil: ecological niche models, predicted geographic distributions, and climate change effects. Int J Parasitol 33:919–931PubMedCrossRefGoogle Scholar
  35. Peterson AT, Sánchez-Cordero V, Beard CB, Ramsey JM (2002a) Ecological niche modeling and potential reservoirs for Chagas disease, Mexico. Emerg Infect Dis 8:662–667PubMedGoogle Scholar
  36. Peterson AT, Stockwell DRB, Kluza DA (2002b) Distributional prediction based on ecological niche modeling of primary occurrence data. In: Scott JM (ed) Predicting species occurrences: issues of scale and accuracy. Island Press, Washington, D.CGoogle Scholar
  37. Peterson AT, Martínez-Campos C, Nakazawa Y, Martínez-Meyer E (2005) Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases. Trans R Soc Trop Med Hyg 99:647–655PubMedCrossRefGoogle Scholar
  38. Peterson AT, Lash RR, Carroll DS, Johnson KM (2006) Geographic potential for outbreaks of Marburg hemorrhagic fever. Am J Trop Med Hyg 75:9–15PubMedGoogle Scholar
  39. Peterson AT, Papes M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modelling. Ecol Model 213:63–72CrossRefGoogle Scholar
  40. Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions. Princeton University Press, PrincetonGoogle Scholar
  41. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  42. Reed KD, Meece JK, Archer JR, Peterson AT (2008) Ecologic niche modeling of Blastomyces dermatitidis in Wisconsin. PLoS One 3:e2034PubMedCrossRefGoogle Scholar
  43. Rosa-Freitas MG, Tsouris P, Peterson AT, Honório NA, Barros FSMD, Aguiar DBD, Gurgel HDC, Arruda MED, Vasconcelos SD, Luitgards-Moura JF (2007) An ecoregional classification for the state of Roraima, Brazil: the importance of landscape in malaria biology. Mem Inst Oswaldo Cruz 102:349–358PubMedCrossRefGoogle Scholar
  44. Ryckman RE (1962) Biosystematics and hosts of the Triatoma complex in North America. Univ Calif Publ Ent 27:93–239Google Scholar
  45. Sandoval-Ruiz CA, Zumaquero-Rios JL, Rojas-Soto OR (2008) Predicting geographic and ecological distributions of triatomine species in the southern Mexican state of Puebla using ecological niche modeling. J Med Entomol 45:540–546PubMedCrossRefGoogle Scholar
  46. Sarkar S, Strutz SE, Frank DM, Rivaldi CL, Sissel B, Sánchez-Cordero V (2010) Chagas disease risk in Texas. PLoS Negl Trop Dis 4:e836CrossRefGoogle Scholar
  47. Schmunis GA, Yadon ZE (2010) Chagas disease: a Latin American health problem becoming a world health problem. Acta Trop 115:14–21PubMedCrossRefGoogle Scholar
  48. Schofield CJ, Galvão C (2009) Classification, evolution and species groups within the Triatominae. Acta Trop 110:88–100PubMedCrossRefGoogle Scholar
  49. Silveira AC, Vinhaes MC (1999) Elimination of vector-borne transmission of Chagas disease. Mem Inst Oswaldo Cruz 94(suppl I):405–411PubMedCrossRefGoogle Scholar
  50. Soberón J (2010) Niche and area of distribution modeling: a population ecology perspective. Ecography 33:159–167CrossRefGoogle Scholar
  51. Soberón J, Peterson AT (2007) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiv Inf 2:1–10Google Scholar
  52. Stockwell DRB, Peters DP (1999) The GARP modelling system: problems and solutions to automated spatial prediction. Int J Geogr Inf Syst 13:143–158CrossRefGoogle Scholar
  53. World Health Organization (WHO) (2007) Disponível em: [] Accessed in June de 2010

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Laboratório de Biodiversidade Entomológica, Instituto Oswaldo CruzFiocruzBrazil
  2. 2.Biodiversity InstituteUniversity of KansasLawrenceUSA

Personalised recommendations