A Role for Complement in Glaucoma?

  • Lizhen Ren
  • John Danias
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 703)


Chronic open angle glaucoma is a degenerative optic neuropathy that can lead to blindness. We have shown that one of the major genes with altered expression in the glaucomatous retina is complement component C1q in both animal models of the disease as well as in humans. These observations together with evidence of upregulation of other complement components within the retina suggest a role for complement in the pathogenesis of this disease. We review the current evidence that supports such a role and discuss possible mechanisms through which complement may act. A thorough understanding of these mechanisms is important in allowing us to rationally design new therapeutic approaches.


Intraocular Pressure Retinal Ganglion Cell Aqueous Humor Optic Neuropathy Optic Nerve Head 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson DR (2003) Collaborative normal tension glaucoma study. Curr Opin Ophthalmol 14(2):86–90PubMedCrossRefGoogle Scholar
  2. Anderson MG, Smith RS, Hawes NL, Zabaleta A, Chang B, Wiggs JL, John SW (2002) Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice. Nat Genet 30(1):81–85PubMedCrossRefGoogle Scholar
  3. Anderson MG, Libby RT, Mao M, Cosma IM, Wilson LA, Smith RS, John SW (2006) Genetic context determines susceptibility to intraocular pressure elevation in a mouse pigmentary glaucoma. BMC Biol 4:20PubMedCrossRefGoogle Scholar
  4. Bayer AU, Danias J, Brodie S, Maag KP, Chen B, Shen F, Podos SM, Mittag TW (2001) Electroretinographic abnormalities in a rat glaucoma model with chronic elevated intraocular pressure. Exp Eye Res 72(6):667–677PubMedCrossRefGoogle Scholar
  5. Beck AD (2003) Review of recent publications of the Advanced Glaucoma Intervention Study. Curr Opin Ophthalmol 14(2):83–85PubMedCrossRefGoogle Scholar
  6. Bohana-Kashtan O, Ziporen L, Donin N, Kraus S, Fishelson Z (2004) Cell signals transduced by complement. Mol Immunol 41(6–7):583–597PubMedCrossRefGoogle Scholar
  7. Cedrone C, Mancino R, Cerulli A, Cesareo M, Nucci C (2008) Epidemiology of primary glaucoma: prevalence, incidence, and blinding effects. Prog Brain Res 173:3–14PubMedCrossRefGoogle Scholar
  8. Coleman AL, Brigatti L (2001) The glaucomas. Minerva Med 92(5):365–379PubMedGoogle Scholar
  9. Cordeiro MF, Guo L, Luong V, Harding G, Wang W, Jones HE, Moss SE, Sillito AM, Fitzke FW (2004) Real-time imaging of single nerve cell apoptosis in retinal neurodegeneration. Proc Natl Acad Sci U S A 101(36):13352–13356PubMedCrossRefGoogle Scholar
  10. Danias J, Lee KC, Zamora MF, Chen B, Shen F, Filippopoulos T, Su Y, Goldblum D, Podos SM, Mittag T (2003) Quantitative analysis of retinal ganglion cell (RGC) loss in aging DBA/2NNia glaucomatous mice: comparison with RGC loss in aging C57/BL6 mice. Invest Ophthalmol Vis Sci 44(12):5151–5162PubMedCrossRefGoogle Scholar
  11. Downs JC, Yang H, Girkin C, Sakata L, Bellezza A, Thompson H, Burgoyne CF (2007) Three-dimensional histomorphometry of the normal and early glaucomatous monkey optic nerve head: neural canal and subarachnoid space architecture. Invest Ophthalmol Vis Sci 48(7):3195–3208PubMedCrossRefGoogle Scholar
  12. Gaipl US, Kuhn A, Sheriff A, Munoz LE, Franz S, Voll RE, Kalden JR, Herrmann M (2006) Clearance of apoptotic cells in human SLE. Curr Dir Autoimmun 9:173–187PubMedGoogle Scholar
  13. Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK II, Wilson MR, Kass MA (2002) The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 120(6):714–720, discussion 829–830PubMedCrossRefGoogle Scholar
  14. Gullstrand B, Martensson U, Sturfelt G, Bengtsson AA, Truedsson L (2009) Complement classical­ pathway components are all important in clearance of apoptotic and secondary necrotic cells. Clin Exp Immunol 156(2):303–311PubMedCrossRefGoogle Scholar
  15. Gupta N, Ly T, Zhang Q, Kaufman PL, Weinreb RN, Yucel YH (2007) Chronic ocular hypertension induces dendrite pathology in the lateral geniculate nucleus of the brain. Exp Eye Res 84(1):176–184PubMedCrossRefGoogle Scholar
  16. Gupta N, Greenberg G, de Tilly LN, Gray B, Polemidiotis M, Yucel YH (2009) Atrophy of the lateral geniculate nucleus in human glaucoma detected by magnetic resonance imaging. Br J Ophthalmol 93(1):56–60PubMedCrossRefGoogle Scholar
  17. Howell GR, Libby RT, Jakobs TC, Smith RS, Phalan FC, Barter JW, Barbay JM, Marchant JK, Mahesh N, Porciatti V, Whitmore AV, Masland RH, John SW (2007a) Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J Cell Biol 179(7):1523–1537PubMedCrossRefGoogle Scholar
  18. Howell GR, Libby RT, Marchant JK, Wilson LA, Cosma IM, Smith RS, Anderson MG, John SW (2007b) Absence of glaucoma in DBA/2J mice homozygous for wild-type versions of Gpnmb and Tyrp1. BMC Genet 8:45PubMedCrossRefGoogle Scholar
  19. Jakobs TC, Libby RT, Ben Y, John SW, Masland RH (2005) Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J Cell Biol 171(2):313–325PubMedCrossRefGoogle Scholar
  20. Jha P, Bora PS, Sohn JH, Kaplan HJ, Bora NS (2006) Complement system and the eye. Adv Exp Med Biol 586:53–62PubMedCrossRefGoogle Scholar
  21. John SW, Smith RS, Savinova OV, Hawes NL, Chang B, Turnbull D, Davisson M, Roderick TH, Heckenlively JR (1998) Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. Invest Ophthalmol Vis Sci 39(6):951–962PubMedGoogle Scholar
  22. Johnson EC, Morrison JC, Farrell S, Deppmeier L, Moore CG, McGinty MR (1996) The effect of chronically elevated intraocular pressure on the rat optic nerve head extracellular matrix. Exp Eye Res 62(6):663–674PubMedCrossRefGoogle Scholar
  23. Kerrigan LA, Zack DJ, Quigley HA, Smith SD, Pease ME (1997) TUNEL-positive ganglion cells in human primary open-angle glaucoma. Arch Ophthalmol 115(8):1031–1035PubMedCrossRefGoogle Scholar
  24. Khalyfa A, Chlon T, Qiang H, Agarwal N, Cooper NG (2007) Microarray reveals complement components are regulated in the serum-deprived rat retinal ganglion cell line. Mol Vis 13:293–308PubMedGoogle Scholar
  25. Kim SJ, Gershov D, Ma X, Brot N, Elkon KB (2003) Opsonization of apoptotic cells and its effect on macrophage and T cell immune responses. Ann N Y Acad Sci 987:68–78PubMedCrossRefGoogle Scholar
  26. Kuehn MH, Kim CY, Ostojic J, Bellin M, Alward WL, Stone EM, Sakaguchi DS, Grozdanic SD, Kwon YH (2006) Retinal synthesis and deposition of complement components induced by ocular hypertension. Exp Eye Res 83(3):620–628PubMedCrossRefGoogle Scholar
  27. Lautenschlager I, Hockerstedt K, Meri S (1999) Complement membrane attack complex and protectin (CD59) in liver allografts during acute rejection. J Hepatol 31(3):537–541PubMedCrossRefGoogle Scholar
  28. Leske MC (2007) Open-angle glaucoma – an epidemiologic overview. Ophthalmic Epidemiol 14(4):166–172PubMedCrossRefGoogle Scholar
  29. Leske MC, Heijl A, Hussein M, Bengtsson B, Hyman L, Komaroff E (2003) Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol 121(1):48–56PubMedCrossRefGoogle Scholar
  30. Leske MC, Heijl A, Hyman L, Bengtsson B, Dong L, Yang Z (2007a) Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 114(11):1965–1972PubMedCrossRefGoogle Scholar
  31. Leske MC, Wu SY, Honkanen R, Nemesure B, Schachat A, Hyman L, Hennis A (2007b) Nine-year incidence of open-angle glaucoma in the Barbados Eye Studies. Ophthalmology 114(6):1058–1064PubMedCrossRefGoogle Scholar
  32. Levkovitch-Verbin H, Quigley HA, Kerrigan-Baumrind LA, D’Anna SA, Kerrigan D, Pease ME (2001) Optic nerve transection in monkeys may result in secondary degeneration of retinal ganglion cells. Invest Ophthalmol Vis Sci 42(5):975–982PubMedGoogle Scholar
  33. Libby RT, Anderson MG, Pang IH, Robinson ZH, Savinova OV, Cosma IM, Snow A, Wilson LA, Smith RS, Clark AF, John SW (2005a) Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration. Vis Neurosci 22(5):637–648PubMedCrossRefGoogle Scholar
  34. Libby RT, Li Y, Savinova OV, Barter J, Smith RS, Nickells RW, John SW (2005b) Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet 1(1):17–26PubMedCrossRefGoogle Scholar
  35. Mevorach D (2000) Opsonization of apoptotic cells. Implications for uptake and autoimmunity. Ann N Y Acad Sci 926:226–235PubMedCrossRefGoogle Scholar
  36. Mittag TW, Danias J, Pohorenec G, Yuan HM, Burakgazi E, Chalmers-Redman R, Podos SM, Tatton WG (2000) Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci 41(11):3451–3459PubMedGoogle Scholar
  37. Miyahara T, Kikuchi T, Akimoto M, Kurokawa T, Shibuki H, Yoshimura N (2003) Gene microarray analysis of experimental glaucomatous retina from cynomologous monkey. Invest Ophthalmol Vis Sci 44(10):4347–4356PubMedCrossRefGoogle Scholar
  38. Morrison JC, Moore CG, Deppmeier LM, Gold BG, Meshul CK, Johnson EC (1997) A rat model of chronic pressure-induced optic nerve damage. Exp Eye Res 64(1):85–96PubMedCrossRefGoogle Scholar
  39. Muller-Eberhard HJ (1986) The membrane attack complex of complement. Annu Rev Immunol 4:503–528PubMedCrossRefGoogle Scholar
  40. Nemesure B, Honkanen R, Hennis A, Wu SY, Leske MC (2007) Incident open-angle glaucoma and intraocular pressure. Ophthalmology 114(10):1810–1815PubMedCrossRefGoogle Scholar
  41. Oliver JE, Hattenhauer MG, Herman D, Hodge DO, Kennedy R, Fang-Yen M, Johnson DH (2002) Blindness and glaucoma: a comparison of patients progressing to blindness from glaucoma with patients maintaining vision. Am J Ophthalmol 133(6):764–772PubMedCrossRefGoogle Scholar
  42. Parrish RK II, Feuer WJ, Schiffman JC, Lichter PR, Musch DC (2009) Five-year follow-up optic disc findings of the Collaborative Initial Glaucoma Treatment Study. Am J Ophthalmol 147(4):717–724.e1PubMedCrossRefGoogle Scholar
  43. Pasinetti GM, Tocco G, Sakhi S, Musleh WD, DeSimoni MG, Mascarucci P, Schreiber S, Baudry M, Finch CE (1996) Hereditary deficiencies in complement C5 are associated with intensified neurodegenerative responses that implicate new roles for the C-system in neuronal and astrocytic functions. Neurobiol Dis 3(3):197–204PubMedCrossRefGoogle Scholar
  44. Pederson JE, Gaasterland DE (1984) Laser-induced primate glaucoma. I. Progression of cupping. Arch Ophthalmol 102(11):1689–1692PubMedCrossRefGoogle Scholar
  45. Quigley HA (1995) Ganglion cell death in glaucoma: pathology recapitulates ontogeny. Aust N Z Ophthalmol 23(2):85–91CrossRefGoogle Scholar
  46. Rasmussen CA, Kaufman PL (2005) Primate glaucoma models. J Glaucoma 14(4):311–314PubMedCrossRefGoogle Scholar
  47. Rudnicka AR, Mt-Isa S, Owen CG, Cook DG, Ashby D (2006) Variations in primary open-angle glaucoma prevalence by age, gender, and race: a Bayesian meta-analysis. Invest Ophthalmol Vis Sci 47(10):4254–4261PubMedCrossRefGoogle Scholar
  48. Schlamp CL, Li Y, Dietz JA, Janssen KT, Nickells RW (2006) Progressive ganglion cell loss and optic nerve degeneration in DBA/2J mice is variable and asymmetric. BMC Neurosci 7:66PubMedCrossRefGoogle Scholar
  49. Schwartz M (2004) Vaccination for glaucoma: dream or reality? Brain Res Bull 62(6):481–484PubMedCrossRefGoogle Scholar
  50. Schwartz M (2005) T-cell-based vaccination against neurodegeneration: a new therapeutic approach. Retina 25(8 Suppl):S33–S35PubMedCrossRefGoogle Scholar
  51. Schwartz M (2007) Modulating the immune system: a vaccine for glaucoma? Can J Ophthalmol 42(3):439–441PubMedCrossRefGoogle Scholar
  52. Schwartz M, Kipnis J (2005) Therapeutic T cell-based vaccination for neurodegenerative disorders: the role of CD4+CD25+ regulatory T cells. Ann N Y Acad Sci 1051:701–708PubMedCrossRefGoogle Scholar
  53. Shareef SR, Garcia-Valenzuela E, Salierno A, Walsh J, Sharma SC (1995) Chronic ocular hypertension following episcleral venous occlusion in rats. Exp Eye Res 61(3):379–382PubMedCrossRefGoogle Scholar
  54. Sheldon WG, Warbritton AR, Bucci TJ, Turturro A (1995) Glaucoma in food-restricted and ad libitum-fed DBA/2NNia mice. Lab Anim Sci 45(5):508–518PubMedGoogle Scholar
  55. Shields MB (2008) Normal-tension glaucoma: is it different from primary open-angle glaucoma? Curr Opin Ophthalmol 19(2):85–88PubMedCrossRefGoogle Scholar
  56. Sohn JH, Kaplan HJ, Suk HJ, Bora PS, Bora NS (2000) Chronic low level complement activation within the eye is controlled by intraocular complement regulatory proteins. Invest Ophthalmol Vis Sci 41(11):3492–3502PubMedGoogle Scholar
  57. Sommer A, Tielsch JM, Katz J, Quigley HA, Gottsch JD, Javitt J, Singh K (1991) Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey. Arch Ophthalmol 109(8):1090–1095PubMedCrossRefGoogle Scholar
  58. Stasi K, Nagel D, Yang X, Wang RF, Ren L, Podos SM, Mittag T, Danias J (2006) Complement component 1Q (C1Q) upregulation in retina of murine, primate, and human glaucomatous eyes. Invest Ophthalmol Vis Sci 47(3):1024–1029PubMedCrossRefGoogle Scholar
  59. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178PubMedCrossRefGoogle Scholar
  60. Tezel G (2009) The role of glia, mitochondria, and the immune system in glaucoma. Invest Ophthalmol Vis Sci 50(3):1001–1012PubMedCrossRefGoogle Scholar
  61. Tezel G, Seigel GM, Wax MB (1998) Autoantibodies to small heat shock proteins in glaucoma. Invest Ophthalmol Vis Sci 39(12):2277–2287PubMedGoogle Scholar
  62. Tezel G, Yang X, Luo C, Peng Y, Sun SL, Sun D (2007) Mechanisms of immune system activation in glaucoma: oxidative stress-stimulated antigen presentation by the retina and optic nerve head glia. Invest Ophthalmol Vis Sci 48(2):705–714PubMedCrossRefGoogle Scholar
  63. Thylefors B, Negrel AD (1994) The global impact of glaucoma. Bull World Health Organ 72(3):323–326PubMedGoogle Scholar
  64. Tielsch JM, Sommer A, Katz J, Royall RM, Quigley HA, Javitt J (1991) Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore Eye Survey. JAMA 266(3):369–374PubMedCrossRefGoogle Scholar
  65. Urcola JH, Hernandez M, Vecino E (2006) Three experimental glaucoma models in rats: comparison of the effects of intraocular pressure elevation on retinal ganglion cell size and death. Exp Eye Res 83(2):429–437PubMedCrossRefGoogle Scholar
  66. Villalba JM, Navas P (2000) Plasma membrane redox system in the control of stress-induced apoptosis. Antioxid Redox Signal 2(2):213–230PubMedCrossRefGoogle Scholar
  67. Wax MB (2000) Is there a role for the immune system in glaucomatous optic neuropathy? Curr Opin Ophthalmol 11(2):145–150PubMedCrossRefGoogle Scholar
  68. Wax MB, Tezel G (2002) Neurobiology of glaucomatous optic neuropathy: diverse cellular events in neurodegeneration and neuroprotection. Mol Neurobiol 26(1):45–55PubMedCrossRefGoogle Scholar
  69. Weinreb RN, Lindsey JD (2005) The importance of models in glaucoma research. J Glaucoma 14(4):302–304PubMedCrossRefGoogle Scholar
  70. Wilson MR, Kosoko O, Cowan CL Jr, Sample PA, Johnson CA, Haynatzki G, Enger C, Crandall D (2002) Progression of visual field loss in untreated glaucoma patients and glaucoma suspects in St. Lucia, West Indies. Am J Ophthalmol 134(3):399–405PubMedCrossRefGoogle Scholar
  71. Xiong ZQ, Qian W, Suzuki K, McNamara JO (2003) Formation of complement membrane attack complex in mammalian cerebral cortex evokes seizures and neurodegeneration. J Neurosci 23(3):955–960PubMedGoogle Scholar
  72. Yang H, Downs JC, Bellezza A, Thompson H, Burgoyne CF (2007a) 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: prelaminar neural tissues and cupping. Invest Ophthalmol Vis Sci 48(11):5068–5084PubMedCrossRefGoogle Scholar
  73. Yang H, Downs JC, Girkin C, Sakata L, Bellezza A, Thompson H, Burgoyne CF (2007b) 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness. Invest Ophthalmol Vis Sci 48(10):4597–4607PubMedCrossRefGoogle Scholar
  74. Yucel Y, Gupta N (2008) Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration. Prog Brain Res 173:465–478PubMedCrossRefGoogle Scholar
  75. Yucel YH, Zhang Q, Gupta N, Kaufman PL, Weinreb RN (2000) Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol 118(3):378–384PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Departments of Cell Biology and OphthalmologySUNY Downstate Medical center NYBrooklynUSA

Personalised recommendations