Bisretinoids of RPE Lipofuscin: Trigger for Complement Activation in Age-Related Macular Degeneration

Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 703)


Genetic association studies and investigations of the constituents of subretinal deposits (drusen) have implicated complement dysregulation as one factor predisposing individuals to increased risk of age-related macular degeneration (AMD). Here we review evidence that molecular fragments released by photooxidation of the bisretinoids of retinal pigment epithelial lipofuscin, can activate complement. Complement activation by this mechanism is dependent on the alternative pathway. The diretinal conjugates comprising RPE lipofuscin accumulate in the cells throughout the lifetime of an individual. As such, these photooxidative processes, in a setting of complement dysregulation could contribute to chronic inflammation underlying AMD pathogenesis.


Retinal Pigment Epithelial Complement Activation Retinal Pigment Epithelial Cell Normal Human Serum Stargardt Disease 



This work was supported by the National Institutes of Health Grants EY 12951, the Kaplen Foundation and by a grant from Research to Prevent Blindness to the Department of Ophthalmology.


  1. Allikmets R, Singh N, Sun H, Shroyer NF, Hutchinson A, Chidambaram A, Gerrard B, Baird L, Stauffer D, Peiffer A, Rattner A, Smallwood P, Li Y, Anderson KL, Lewis RA, Nathans J, Leppert M, Dean M, Lupski JR (1997) A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 15:236–246PubMedCrossRefGoogle Scholar
  2. Anderson DH, Mullins RF, Hageman GS, Johnson LV (2002) A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 134:411–431PubMedCrossRefGoogle Scholar
  3. AREDS (2000) Risk factors associated with age-related macular degeneration. A case-control study in the age-related eye disease study: age-related eye disease study report number 3. Ophthalmology 107:2224–2232CrossRefGoogle Scholar
  4. AREDS (2001) A randomized, placebo-controlled clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss. AREDS Report No. 8. Arch Ophthalmol 119:1417–1436CrossRefGoogle Scholar
  5. Baird PN, Robman LD, Richardson AJ, Dimitrov PN, Tikellis G, McCarty CA, Guymer RH (2008) Gene environment interaction in progression of AMD: the CFH gene, smoking and exposure to chronic infection. Hum Mol Genet 17:1299–1305PubMedCrossRefGoogle Scholar
  6. Ben-Shabat S, Itagaki Y, Jockusch S, Sparrow JR, Turro NJ, Nakanishi K (2002a) Formation of a nona-oxirane from A2E, a lipofuscin fluorophore related to macular degeneration, and ­evidence of singlet oxygen involvement. Angew Chem Int Ed 41:814–817CrossRefGoogle Scholar
  7. Ben-Shabat S, Parish CA, Vollmer HR, Itagaki Y, Fishkin N, Nakanishi K, Sparrow JR (2002b) Biosynthetic studies of A2E, a major fluorophore of RPE lipofuscin. J Biol Chem 277:7183–7190PubMedCrossRefGoogle Scholar
  8. Black S, Kushner I, Samols D (2004) C-reactive protein. J Biol Chem 279:48487–48490PubMedCrossRefGoogle Scholar
  9. Boekhoorn SS, Vingerling JR, Witteman JC, Hofman A, de Jong PT (2007) C-reactive protein level and risk of aging macula disorder: the Rotterdam Study. Arch Ophthalmol 125:1396–1401PubMedCrossRefGoogle Scholar
  10. Christen WG, Ajani UAA, Glynn RJ, Manson JE, Schaumberg DA, Chew EC, Buring JE, Hennekens CH (1999) Prospective cohort study of antioxidant vitamin supplement use and the risk of age-related maculopathy. Am J Epidemiol 149:476–484PubMedCrossRefGoogle Scholar
  11. Conley YP, Thalamuthu A, Jakobsdottir J, Weeks DE, Mah T, Ferrell RE, Gorin MB (2005) Candidate gene analysis suggests a role for fatty acid biosynthesis and regulation of the complement system in the etiology of age-related maculopathy. Hum Mol Genet 14:1991–2002PubMedCrossRefGoogle Scholar
  12. Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, Kamei M, Hasan A, Yan L, Raybourn ME, Salomon RG, Hollyfield JG (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A 99:14682–14687PubMedCrossRefGoogle Scholar
  13. Cruickshanks KJ, Klein R, Klein BEK, Nondahl DM (2001) Sunlight and the 5-year incidence of early age-related maculopathy: the Beaver Dam Eye Study. Arch Ophthalmol 119:246–250PubMedGoogle Scholar
  14. Davis MD, Gangnon RE, Lee LY, Hubbard LD, Klein BE, Klein R, Ferris FL, Bressler SB, Milton RC, A.-R. E. D. S. Group (2005) The Age-Related Eye Disease Study severity scale for age-related macular degeneration: AREDS Report No. 17. Arch Ophthalmol 123:1484–1498PubMedCrossRefGoogle Scholar
  15. Delcourt C, Cristol JP, Tessier F, Leger CL, Descomps B, Papoz L (1999) Age-related macular degeneration and antioxidant status in the POLA study. POLA Study Group. Pathologies Oculaires Liees a l’Age. Arch Ophthalmol 117:1384–1390PubMedGoogle Scholar
  16. Delori FC, Goger DG, Dorey CK (2001) Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects. Invest Ophthalmol Vis Sci 42:1855–1866PubMedGoogle Scholar
  17. Delori FC, Keilhauer C, Sparrow JR, Staurenghi G (2007) Origin of fundus autofluorescence. In: Holz FG, Schmitz-Valckenberg S, Spaide RF, Bird AC (eds) Atlas of fundus autofluorescence imaging. Springer-Verlag, Heidelberg, pp 17–29Google Scholar
  18. Dillon J, Wang Z, Avalle LB, Gaillard ER (2004) The photochemical oxidation of A2E results in the formation of a 5, 8, 5’, 8’-bis-furanoid oxide. Exp Eye Res 79:537–542PubMedCrossRefGoogle Scholar
  19. Donoso LA, Kim D, Frost A, Callahan A, Hageman G (2006) The role of inflammation in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 51:137–152PubMedCrossRefGoogle Scholar
  20. Edwards AO, Ritter R, Abel KJ, Manning A, Panhuysen C, Farrer LA (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308:421–424PubMedCrossRefGoogle Scholar
  21. Eldred GE, Lasky MR (1993) Retinal age pigments generated by self-assembling lysosomotropic detergents. Nature 361:724–726PubMedCrossRefGoogle Scholar
  22. Fishkin N, Sparrow JR, Allikmets R, Nakanishi K (2005) Isolation and characterization of a retinal pigment epithelial cell fluorophore: an all-trans-retinal dimer conjugate. Proc Natl Acad Sci U S A 102:7091–7096PubMedCrossRefGoogle Scholar
  23. Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K, Cramer K, Neel J, Bergeron J, Barile GR, Smith RT, AMD Genetics Clinical Study Group, Hageman GS, Dean M, Allikmets R (2006) Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 38:458–462PubMedCrossRefGoogle Scholar
  24. Haas P, Steindl K, Schmid-Kubista KE, Aggermann T, Krugluger W, Hageman GS, Binder S (2009) Complement factor H gene polymorphisms and Chlamydia pneumoniae infection in age-related macular degeneration. Eye (Lond) 23:2228–2232CrossRefGoogle Scholar
  25. Hageman GS, Luthert PJ, Chong NHV, Johnson LV, Anderson DH, Mullins RF (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 20:705–732PubMedCrossRefGoogle Scholar
  26. Hageman GS, Anderson DH, Johnson LV, Hancox LS, Taiber AJ, Hardisty LI, Hageman JL, Stockman HA, Borchardt JD, Gehrs KM, Smith RJH, Silvestri G, Russell SR, Klaver CCW, Barbazetto I, Chang S, Yannuzzi LA, Barile GR, Merriam JC, Smith RT, Olsh AK, Bergeron J, Zernant J, Merriam JE, Gold B, Dean M, Allikmets R (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A 102:7227–7232PubMedCrossRefGoogle Scholar
  27. Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, Spencer KL, Kwan SY, Noureddine M, Gilbert JR, Schnetz-Boutaud N, Agarwal A, Postel EA, Pericak-Vance MA (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308:419–421PubMedCrossRefGoogle Scholar
  28. Ishida O, Oku H, Ikeda T, Nishimura M, Kawagoe K, Nakamura K (2003) Is Chlamydia pneumoniae infection a risk factor for age related macular degeneration. Br J Ophthalmol 87:523–524PubMedCrossRefGoogle Scholar
  29. Jang YP, Matsuda H, Itagaki Y, Nakanishi K, Sparrow JR (2005a) Characterization of peroxy-A2E and furan-A2E photooxidation products and detection in human and mouse retinal pigment epithelial cells lipofuscin. J Biol Chem 280:39732–39739PubMedCrossRefGoogle Scholar
  30. Jang YP, Zhou J, Nakanishi K, Sparrow JR (2005b) Anthocyanins protect against A2E photooxidation and membrane permeabilization in retinal pigment epithelial cells. Photochem Photobiol 81:529–536PubMedCrossRefGoogle Scholar
  31. Kalayoglu MV, Galvan C, Mahdi OS, Byrne GI, Mansour S (2003) Serological association between Chlamydia pneumoniae infection and age-related macular degeneration. Arch Ophthalmol 121:478–482PubMedCrossRefGoogle Scholar
  32. Kim SR, Fishkin N, Kong J, Nakanishi K, Allikmets R, Sparrow JR (2004) The Rpe65 Leu450Met variant is associated with reduced levels of the RPE lipofuscin fluorophores A2E and iso-A2E. Proc Natl Acad Sci U S A 101:11668–11672PubMedCrossRefGoogle Scholar
  33. Kim SR, Jang YP, Jockusch S, Fishkin NE, Turro NJ, Sparrow JR (2007) The all-trans-retinal dimer series of lipofuscin pigments in retinal pigment epithelial cells in a recessive Stargardt disease model. Proc Natl Acad Sci U S A 104:19273–19278PubMedCrossRefGoogle Scholar
  34. Kim SR, Jockusch S, Itagaki Y, Turro NJ, Sparrow JR (2008) Mechanisms involved in A2E oxidation. Exp Eye Res 86:975–982PubMedCrossRefGoogle Scholar
  35. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389PubMedCrossRefGoogle Scholar
  36. Laine M, Jarva H, Seitsonen S, Haapasalo K, Lehtinen MJ, Lindeman N, Anderson DH, Johnson PT, Jarvela I, Jokiranta TS, Hageman GS, Immonen I, Meri S (2007) Y402H polymorphism of complement factor H affects binding affinity to C-reactive protein. J Immunol 178:3831–3836PubMedGoogle Scholar
  37. Mares-Perlman JA, Klein R, Klein BE, Greger JL, Brady WE, Palta M, Ritter LL (1996) Association of zinc and antioxidant nutrients with age-related maculopathy. Arch Ophthalmol 114:991–997PubMedCrossRefGoogle Scholar
  38. Montes T, Tortajada A, Morgan BP, Rodríguez de Córdoba S, Harris CL (2009) Functional basis of protection against age-related macular degeneration conferred by a common polymorphism in complement factor B. Proc Natl Acad Sci U S A 106:4366–4371PubMedCrossRefGoogle Scholar
  39. Nozaki M, Raisler BJ, Sakurai E, Sarma JV, Barnum SR, Lambris JD, Chen Y, Zhang K, Ambati BK, Baffi JZ, Ambati J (2006) Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci U S A 103:2328–2333PubMedCrossRefGoogle Scholar
  40. Ormsby RJ, Ranganathan S, Tong JC, Griggs KM, Dimasi DP, Hewitt AW, Burdon KP, Craig JE, Hoh J, Gordon DL (2008) Functional and structural implications of the complement factor H Y402H polymorphism associated with age-related macular degeneration. Invest Ophthalmol Vis Sci 49:1763–1770PubMedCrossRefGoogle Scholar
  41. Parish CA, Hashimoto M, Nakanishi K, Dillon J, Sparrow JR (1998) Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium. Proc Natl Acad Sci U S A 95:14609–14613PubMedCrossRefGoogle Scholar
  42. Ricklin D, Lambris JD (2007) Complement-targeted therapeutics. Nat Biotechnol 25:1265–1275PubMedCrossRefGoogle Scholar
  43. Robman L, Mahdi O, McCarty C, Dimitrov P, Tikellis G, McNeil J, Byrne G, Taylor H, Guymer RH (2005) Exposure to Chlamydia pneumoniae infection and progression of age-related macular degeneration. Am J Epidemiol 161:1013–1019PubMedCrossRefGoogle Scholar
  44. Sahu A, Kay BK, Lambris JD (1996) Inhibition of human complement by a C3-binding peptide isolated from a phage-displayed random peptide library. J Immunol 157:884–891PubMedGoogle Scholar
  45. Sakai N, Decatur J, Nakanishi K, Eldred GE (1996) Ocular age pigment “A2E”: an unprecedented pyridinium bisretinoid. J Am Chem Soc 118:1559–1560CrossRefGoogle Scholar
  46. Schaumberg DA, Christen WG, Buring JE, Glynn RJ, Rifai N, Ridker PM (2007) High-sensitivity C-reactive protein, other markers of inflammation and the incidence of macular degeneration in women. Arch Ophthalmol 125:300–305PubMedCrossRefGoogle Scholar
  47. Seddon JM, Gensler G, Milton RC, Klein ML, Rifai N (2004) Association between C-reactive protein and age-related macular degeneration. JAMA 291:704–710PubMedCrossRefGoogle Scholar
  48. Sjoberg AP, Trouw LA, Clark S, Sjolander J, Heinegard D, Sim RB, Day AJ, Blom AM (2007) The factor H variant associated with age-related macular degeneration (His-384) and the non-disease-associated form bind differentially to C-reactive protein, fibromodulin, DNA, and necrotic cells. J Biol Chem 282:10894–108900PubMedCrossRefGoogle Scholar
  49. Smith W, Mitchell P, Leeder SR (1996) Smoking and age-related maculopathy. Arch Ophthalmol 114:1518–1523PubMedCrossRefGoogle Scholar
  50. Sparrow JR (2007) Lipofuscin of the retinal pigment epithelium. In: Holz FG, Schmitz-Valckenberg S, Spaide RF, Bird AC (eds) Atlas of autofluorescence imaging. Springer, Heidelberg, pp 3–16Google Scholar
  51. Sparrow JR, Boulton M (2005) RPE lipofuscin and its role in retinal photobiology. Exp Eye Res 80:595–606PubMedCrossRefGoogle Scholar
  52. Sparrow JR, Parish CA, Hashimoto M, Nakanishi K (1999) A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. Invest Ophthalmol Vis Sci 40:2988–2995PubMedGoogle Scholar
  53. Sparrow JR, Nakanishi K, Parish CA (2000) The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 41:1981–1989PubMedGoogle Scholar
  54. Sparrow JR, Zhou J, Ben-Shabat S, Vollmer H, Itagaki Y, Nakanishi K (2002) Involvement of oxidative mechanisms in blue light induced damage to A2E-laden RPE. Invest Ophthalmol Vis Sci 43:1222–1227PubMedGoogle Scholar
  55. Sparrow JR, Vollmer-Snarr HR, Zhou J, Jang YP, Jockusch S, Itagaki Y, Nakanishi K (2003) A2E-epoxides damage DNA in retinal pigment epithelial cells. Vitamin E and other antioxidants inhibit A2E-epoxide formation. J Biol Chem 278:18207–18213PubMedCrossRefGoogle Scholar
  56. Spencer KL, Hauser MA, Olson LM, Schmidt S, Scott WK, Gallins P, Agarwal A, Postel EA, Pericak-Vance MA, Haines JL (2007) Protective effect of complement factor B and complement component 2 variants in age-related macular degeneration. Hum Mol Genet 16:1986–1992PubMedCrossRefGoogle Scholar
  57. Taylor HR, West S, Munoz B, Rosenthal FS, Bressler SB, Bressler NM (1992) The long-term effects of visible light on the eye [see comments]. Arch Ophthalmol 110:99–104PubMedCrossRefGoogle Scholar
  58. Tomany SC, Cruickshanks KJ, Klein R, Klein BEK, Knudtson MD (2004) Sunlight and the 10-year incidence of age-related maculopathy. The Beaver Dam Eye Study. Arch Ophthalmol 122:750–757PubMedCrossRefGoogle Scholar
  59. van Leeuwen R, Boekhoorn S, Vingerling JR, Witteman JC, Klaver CC, Hofman A, de Jong PT (2005) Dietary intake of antioxidants and risk of age-related macular degeneration. JAMA 294:3101–3107PubMedCrossRefGoogle Scholar
  60. Wu Z, Lauer TW, Sick A, Hackett SF, Campochiaro PA (2007) Oxidative stress modulates complement factor H expression in retinal pigmented epithelial cells by acetylation of FOXO3. J Biol Chem 282:22414–22425PubMedCrossRefGoogle Scholar
  61. Yates JR, Sepp T, Matharu BK, Khan JC, Thurlby DA, Shahid H, Clayton DG, Hayward C, Morgan J, Wright AF, Armbrecht AM, Dhillon B, Deary IJ, Redmond E, Bird AC, Moore AT (2007) Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med 357:553–561PubMedCrossRefGoogle Scholar
  62. Zareparsi S, Branham KE, Li M, Shah S, Klein RJ, Ott J, Hoh J, Abecasis GR, Swaroop A (2005) Strong association of the Y402H variant in complement factor H at 1q32 with susceptibility to age-related macular degeneration. Am J Hum Genet 77:149–153PubMedCrossRefGoogle Scholar
  63. Zhou J, Cai B, Jang YP, Pachydaki S, Schmidt AM, Sparrow JR (2005) Mechanisms for the induction of HNE- MDA- and AGE-adducts, RAGE and VEGF in retinal pigment epithelial cells. Exp Eye Res 80:567–580PubMedCrossRefGoogle Scholar
  64. Zhou J, Gao X, Cai B, Sparrow JR (2006a) Indirect antioxidant protection against photooxidative processes initiated in retinal pigment epithelial cells by a lipofuscin pigment. Rejuvenation Res 9:256–263PubMedCrossRefGoogle Scholar
  65. Zhou J, Jang YP, Kim SR, Sparrow JR (2006b) Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium. Proc Natl Acad Sci U S A 103:16182–16187PubMedCrossRefGoogle Scholar
  66. Zhou J, Kim SR, Westlund BS, Sparrow JR (2009) Complement activation by bisretinoid constituents of RPE lipofuscin. Invest Ophthalmol Vis Sci 50:1392–1399PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of OphthalmologyColumbia UniversityNew YorkUSA

Personalised recommendations