A New Role for Myeloid HO-1 in the Innate to Adaptive Crosstalk and Immune Homeostasis

  • Vasiliki Koliaraki
  • George Kollias
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 780)


Increasing evidence supports the presence of a dynamic crosstalk between innate and adaptive immunity with a pivotal role played by pathways governing innate immune responses. TLRs (Toll-like receptors) and RLHs (retinoic acid-inducible gene I [RIG-I]-like helicases) are known to play a key role in these processes. A molecule of high significance in the protection against innate and adaptive immune aberrations is heme oxygenase 1 (HO-1). HO-1 is a microsomal enzyme that catalyses the degradation of heme to iron, carbon monoxide and bilirubin. These by-products appear to be the key mediators of its anti-­inflammatory and cytoprotective action, mainly through the downregulation of pro-inflammatory and upregulation of anti-inflammatory molecules. Recent data from our lab support the presence of an additional direct effect of myeloid HO-1 on innate immune conditioning, and more specifically on the TLR3/TLR4/RIG-I pathway. In myeloid cells, HO-1 forms a complex with the transcription factor IRF3 (Interferon regulating factor 3) and is required for IRF3 phosphorylation and consequent type-I interferon and chemokine gene induction. Myeloid HO-1–deficient mice show reduced expression of IRF3 target genes and altered responses to infectious and organ-specific auto-immune diseases. This new frame of understanding HO-1 function should also be important for the future design of novel interventions differentially targeting the enzymatic versus the IRF3 modulating properties of HO-1.


Heme Oxygenase Myeloid Differentiation Primary Response Gene Transcription Factor IRF3 Watanabe Heritable Hyperlipidemic Rabbit IRF3 Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the seventh FP European Commission programs MASTERSWITCH (223404) and INFLACARE (223151).


  1. 1.
    Adachi T, Ishikawa K, Hida W et al (2004) Hypoxemia and blunted hypoxic ventilatory responses in mice lacking heme oxygenase-2. Biochem Biophys Res Commun 320(2):514–522PubMedCrossRefGoogle Scholar
  2. 2.
    Akira S, Takeda K (2004) Toll-like receptor signaling. Nat Rev Immunol 4(7):499–511PubMedCrossRefGoogle Scholar
  3. 3.
    Amersi F, Shen XD, Anselmo D et al (2002) Ex vivo exposure to carbon monoxide prevents hepatic ischemia/reperfusion injury through p38 MAP kinase pathway. Hepatology 35(4):815–823PubMedCrossRefGoogle Scholar
  4. 4.
    Benallaoua M, Francois M, Batteux F et al (2007) Pharmacologic induction of heme oxygenase 1 reduces acute inflammatory arthritis in mice. Arthritis Rheum 56(8):2585–2594PubMedCrossRefGoogle Scholar
  5. 5.
    Blydt-Hansen TD, Katori M, Lassman C et al (2003) Gene transfer-induced local heme oxygenase-1 over-expression protects rat kidney transplants from ischemia/reperfusion injury. J Am Soc Nephrol 14(3):745–754PubMedCrossRefGoogle Scholar
  6. 6.
    Brouard S, Berberat PO, Tobiasch E et al (2002) Heme oxygenase-1-derived carbon monoxide requires the activation of transcription factor NF-kappa B to protect endothelial cells from tumor necrosis factor-alpha-mediated apoptosis. J Biol Chem 277(20):17950–17961PubMedCrossRefGoogle Scholar
  7. 7.
    Chora AA, Fontoura P, Cunha A et al (2007) Heme oxygenase-1 and carbon monoxide suppress auto-immune neuroinflammation. J Clin Invest 117(2):438–447PubMedCrossRefGoogle Scholar
  8. 8.
    Chung SW, Liu X, Macias AA et al (2008) Heme oxygenase-1-derived carbon monoxide enhances the host defense response to microbial sepsis in mice. J Clin Invest 118(1):239–247PubMedCrossRefGoogle Scholar
  9. 9.
    Cruse I, Maines MD (1988) Evidence suggesting that the two forms of heme oxygenase are products of different genes. J Biol Chem 263(7):3348–3353PubMedGoogle Scholar
  10. 10.
    Exner M, Minar E, Wagner O et al (2004) The role of heme oxygenase-1 promoter polymorphisms in human disease. Free Radic Biol Med 37(8):1097–1104PubMedCrossRefGoogle Scholar
  11. 11.
    Ferrandiz ML, Maicas N, Garcia-Arnandis I et al (2008) Treatment with a CO-releasing molecule (CORM-3) reduces joint inflammation and erosion in murine collagen-induced arthritis. Ann Rheum Dis 67(9):1211–1217PubMedCrossRefGoogle Scholar
  12. 12.
    Fondevila C, Shen XD, Tsuchiyashi S et al (2004) Biliverdin therapy protects rat livers from ischemia and reperfusion injury. Hepatology 40(6):1333–1341PubMedCrossRefGoogle Scholar
  13. 13.
    Goldberg A, Parolini M, Chin BY et al (2007) Toll-like receptor 4 suppression leads to islet allograft survival. FASEB J 21(11):2840–2848PubMedCrossRefGoogle Scholar
  14. 14.
    Gong Q, Yin H, Fang M et al (2008) Heme oxygenase-1 upregulation significantly inhibits TNF-alpha and Hmgb1 releasing and attenuates lipopolysaccharide-induced acute lung injury in mice. Int Immunopharmacol 8(6):792–798PubMedCrossRefGoogle Scholar
  15. 15.
    Gunther L, Berberat PO, Haga M et al (2002) Carbon monoxide protects pancreatic beta-cells from apoptosis and improves islet function/survival after transplantation. Diabetes 51(4):994–999PubMedCrossRefGoogle Scholar
  16. 16.
    Hashiba T, Suzuki M, Nagashima Y et al (2001) Adenovirus-mediated transfer of heme oxygenase-1 cDNA attenuates severe lung injury induced by the influenza virus in mice. Gene Ther 8(19):1499–1507PubMedCrossRefGoogle Scholar
  17. 17.
    Hayashi S, Omata Y, Sakamoto H et al (2004) Characterization of rat heme oxygenase-3 gene. Implication of processed pseudogenes derived from heme oxygenase-2 gene. Gene 336(2):241–250PubMedCrossRefGoogle Scholar
  18. 18.
    Hoebe K, Janssen E, Beutler B (2004) The interface between innate and adaptive immunity. Nat Immunol 5(10):971–974PubMedCrossRefGoogle Scholar
  19. 19.
    Hu CM, Lin HH, Chiang MT et al (2007) Systemic expression of heme oxygenase-1 ameliorates type 1 diabetes in NOD mice. Diabetes 56(5):1240–1247PubMedCrossRefGoogle Scholar
  20. 20.
    Ishikawa K, Sugawara D, Goto J et al (2001) Heme oxygenase-1 inhibits atherogenesis in Watanabe heritable hyperlipidemic rabbits. Circulation 104(15):1831–1836PubMedCrossRefGoogle Scholar
  21. 21.
    Ishikawa K, Sugawara D, Wang X et al (2001) Heme oxygenase-1 inhibits atherosclerotic lesion formation in ldl-receptor knock-out mice. Circ Res 88(5):506–512PubMedGoogle Scholar
  22. 22.
    Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327(5963):291–295PubMedCrossRefGoogle Scholar
  23. 23.
    Juan SH, Lee TS, Tseng KW et al (2001) Adenovirus-mediated heme oxygenase-1 gene transfer inhibits the development of atherosclerosis in apolipoprotein E-deficient mice. Circulation 104(13):1519–1525PubMedCrossRefGoogle Scholar
  24. 24.
    Kato H, Takeuchi O, Sato S et al (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441(7089):101–105PubMedCrossRefGoogle Scholar
  25. 25.
    Kawai T, Takahashi K, Sato S et al (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6(10):981–988PubMedCrossRefGoogle Scholar
  26. 26.
    Kawashima A, Oda Y, Yachie A et al (2002) Heme oxygenase-1 deficiency: the first autopsy case. Hum Pathol 33(1):125–130PubMedCrossRefGoogle Scholar
  27. 27.
    Kim HS, Loughran PA, Rao J et al (2008) Carbon monoxide activates NF-kappaB via ROS generation and Akt pathways to protect against cell death of hepatocytes. Am J Physiol Gastrointest Liver Physiol 295(1):G146–G152PubMedCrossRefGoogle Scholar
  28. 28.
    Kobayashi H, Takeno M, Saito T et al (2006) Regulatory role of heme oxygenase 1 in inflammation of rheumatoid arthritis. Arthritis Rheum 54(4):1132–1142PubMedCrossRefGoogle Scholar
  29. 29.
    Koizumi S (2007) Human heme oxygenase-1 deficiency: a lesson on serendipity in the discovery of the novel disease. Pediatr Int 49(2):125–132PubMedCrossRefGoogle Scholar
  30. 30.
    Le Bon A, Tough DF (2002) Links between innate and adaptive immunity via type I interferon. Curr Opin Immunol 14(4):432–436PubMedCrossRefGoogle Scholar
  31. 31.
    Lee TS, Chau LY (2002) Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat Med 8(3):240–246PubMedCrossRefGoogle Scholar
  32. 32.
    Li M, Peterson S, Husney D et al (2007) Long-lasting expression of HO-1 delays progression of type I diabetes in NOD mice. Cell Cycle 6(5):567–571PubMedCrossRefGoogle Scholar
  33. 33.
    Liu Y, Zhu B, Luo L et al (2001) Heme oxygenase-1 plays an important protective role in experimental auto-immune encephalomyelitis. Neuroreport 12(9):1841–1845PubMedCrossRefGoogle Scholar
  34. 34.
    Maines MD (1988) Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J 2(10):2557–2568PubMedGoogle Scholar
  35. 35.
    Maines MD, Trakshel GM, Kutty RK (1986) Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible. J Biol Chem 261(1):411–419PubMedGoogle Scholar
  36. 36.
    McCoubrey WK Jr, Huang TJ, Maines MD (1997) Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem 247(2):725–732PubMedCrossRefGoogle Scholar
  37. 37.
    Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1(2):135–145PubMedCrossRefGoogle Scholar
  38. 38.
    Megias J, Busserolles J, Alcaraz MJ (2007) The carbon monoxide-releasing molecule CORM-2 inhibits the inflammatory response induced by cytokines in Caco-2 cells. Br J Pharmacol 150(8):977–986PubMedCrossRefGoogle Scholar
  39. 39.
    Melo LG, Agrawal R, Zhang L et al (2002) Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene. Circulation 105(5):602–607PubMedCrossRefGoogle Scholar
  40. 40.
    Nakahira K, Kim HP, Geng XH et al (2006) Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J Exp Med 203(10):2377–2389PubMedCrossRefGoogle Scholar
  41. 41.
    Otterbein LE, Bach FH, Alam J et al (2000) Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6(4):422–428PubMedCrossRefGoogle Scholar
  42. 42.
    Overhaus M, Moore BA, Barbato JE et al (2006) Biliverdin protects against polymicrobial sepsis by modulating inflammatory mediators. Am J Physiol Gastrointest Liver Physiol 290(4):G695–G703PubMedCrossRefGoogle Scholar
  43. 43.
    Pae HO, Oh GS, Choi BM et al (2004) Carbon monoxide produced by heme oxygenase-1 suppresses T cell proliferation via inhibition of IL-2 production. J Immunol 172(8):4744–4751PubMedGoogle Scholar
  44. 44.
    Pamplona A, Ferreira A, Balla J et al (2007) Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria. Nat Med 13(6):703–710PubMedCrossRefGoogle Scholar
  45. 45.
    Park SY, Lee SW, Shin HK et al (2010) Cilostazol enhances apoptosis of synovial cells from rheumatoid arthritis patients with inhibition of cytokine formation via Nrf2-linked heme oxygenase 1 induction. Arthritis Rheum 62(3):732–741PubMedCrossRefGoogle Scholar
  46. 46.
    Perry AK, Chow EK, Goodnough JB et al (2004) Differential requirement for TANK-binding kinase-1 in type I interferon responses to toll-like receptor activation and viral infection. J Exp Med 199(12):1651–1658PubMedCrossRefGoogle Scholar
  47. 47.
    Petrache I, Otterbein LE, Alam J et al (2000) Heme oxygenase-1 inhibits TNF-alpha-induced apoptosis in cultured fibroblasts. Am J Physiol Lung Cell Mol Physiol 278(2):L312–L319PubMedGoogle Scholar
  48. 48.
    Poss KD, Tonegawa S (1997) Heme oxygenase 1 is required for mammalian iron reutilization. Proc Natl Acad Sci USA 94(20):10919–10924PubMedCrossRefGoogle Scholar
  49. 49.
    Poss KD, Tonegawa S (1997) Reduced stress defense in heme oxygenase 1-deficient cells. Proc Natl Acad Sci USA 94(20):10925–10930PubMedCrossRefGoogle Scholar
  50. 50.
    Protzer U, Seyfried S, Quasdorff M et al (2007) Antiviral activity and hepatoprotection by heme oxygenase-1 in hepatitis B virus infection. Gastroenterology 133(4):1156–1165PubMedCrossRefGoogle Scholar
  51. 51.
    Remy S, Blancou P, Tesson L et al (2009) Carbon monoxide inhibits TLR-induced dendritic cell immunogenicity. J Immunol 182(4):1877–1884PubMedCrossRefGoogle Scholar
  52. 52.
    Rock FL, Hardiman G, Timans JC et al (1998) A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA 95(2):588–593PubMedCrossRefGoogle Scholar
  53. 53.
    Rodella L, Lamon BD, Rezzani R et al (2006) Carbon monoxide and biliverdin prevent endothelial cell sloughing in rats with type I diabetes. Free Radic Biol Med 40(12):2198–2205PubMedCrossRefGoogle Scholar
  54. 54.
    Rodella LF, Vanella L, Peterson SJ et al (2008) Heme oxygenase-derived carbon monoxide restores vascular function in type 1 diabetes. Drug Metab Lett 2(4):290–300PubMedCrossRefGoogle Scholar
  55. 55.
    Ryter SW, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86(2):583–650PubMedCrossRefGoogle Scholar
  56. 56.
    Saha SK, Pietras EM, He JQ et al (2006) Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J 25(14):3257–3263PubMedCrossRefGoogle Scholar
  57. 57.
    Sarady-Andrews JK, Liu F, Gallo D et al (2005) Biliverdin administration protects against endotoxin-induced acute lung injury in rats. Am J Physiol Lung Cell Mol Physiol 289(6):L1131–L1137PubMedCrossRefGoogle Scholar
  58. 58.
    Seth RB, Sun L, Ea CK et al (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122(5):669–682PubMedCrossRefGoogle Scholar
  59. 59.
    Suh GY, Jin Y, Yi AK et al (2006) CCAAT/enhancer-binding protein mediates carbon monoxide-induced suppression of cyclooxygenase-2. Am J Respir Cell Mol Biol 35(2):220–226PubMedCrossRefGoogle Scholar
  60. 60.
    Takamiya R, Hung CC, Hall SR et al (2009) High-mobility group box 1 contributes to lethality of endotoxemia in heme oxygenase-1-deficient mice. Am J Respir Cell Mol Biol 41(2):129–135PubMedCrossRefGoogle Scholar
  61. 61.
    Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17(1):1–14PubMedCrossRefGoogle Scholar
  62. 62.
    Takeda Y, Takeno M, Iwasaki M et al (2004) Chemical induction of HO-1 suppresses lupus nephritis by reducing local iNOS expression and synthesis of anti-dsDNA antibody. Clin Exp Immunol 138(2):237–244PubMedCrossRefGoogle Scholar
  63. 63.
    Takeuchi O, Akira S (2008) MDA5/RIG-I and virus recognition. Curr Opin Immunol 20(1):17–22PubMedCrossRefGoogle Scholar
  64. 64.
    Tenhunen R, Marver H, Pimstone NR et al (1972) Enzymatic degradation of heme. Oxygenative cleavage requiring cytochrome P-450. Biochemistry 11(9):1716–1720PubMedCrossRefGoogle Scholar
  65. 65.
    Tenhunen R, Marver HS, Schmid R (1968) The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci USA 61(2):748–755PubMedCrossRefGoogle Scholar
  66. 66.
    Tenhunen R, Marver HS, Schmid R (1969) The enzymatic conversion of hemoglobin to bilirubin. Trans Assoc Am Physicians 82:363–371PubMedGoogle Scholar
  67. 67.
    Tenhunen R, Marver HS, Schmid R (1969) Microsomal heme oxygenase. Characterization of the enzyme. J Biol Chem 244(23):6388–6394PubMedGoogle Scholar
  68. 68.
    Tsuchihashi S, Zhai Y, Bo Q et al (2007) Heme oxygenase-1 mediated cytoprotection against liver ischemia and reperfusion injury: inhibition of type-1 interferon signaling. Transplantation 83(12):1628–1634PubMedCrossRefGoogle Scholar
  69. 69.
    Tsuchihashi S, Zhai Y, Fondevila C et al (2005) HO-1 upregulation suppresses type 1 IFN pathway in hepatic ischemia/reperfusion injury. Transplant Proc 37(4):1677–1678PubMedCrossRefGoogle Scholar
  70. 70.
    Tzima S, Victoratos P, Kranidioti K et al (2009) Myeloid heme oxygenase-1 regulates innate immunity and auto-immunity by modulating IFN-beta production. J Exp Med 206(5):1167–1179PubMedCrossRefGoogle Scholar
  71. 71.
    Wang XM, Kim HP, Nakahira K et al (2009) The heme oxygenase-1/carbon monoxide pathway suppresses TLR4 signaling by regulating the interaction of TLR4 with caveolin-1. J Immunol 182(6):3809–3818PubMedCrossRefGoogle Scholar
  72. 72.
    Wiesel P, Patel AP, DiFonzo N et al (2000) Endotoxin-induced mortality is related to increased oxidative stress and end-organ dysfunction, not refractory hypotension, in heme oxygenase-1-deficient mice. Circulation 102(24):3015–3022PubMedGoogle Scholar
  73. 73.
    Wilks A (2002) Heme oxygenase: evolution, structure, and mechanism. Antioxid Redox Signal 4(4):603–614PubMedCrossRefGoogle Scholar
  74. 74.
    Yachie A, Niida Y, Wada T et al (1999) Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest 103(1):129–135PubMedCrossRefGoogle Scholar
  75. 75.
    Yet SF, Layne MD, Liu X et al (2003) Absence of heme oxygenase-1 exacerbates atherosclerotic lesion formation and vascular remodeling. FASEB J 17(12):1759–1761PubMedGoogle Scholar
  76. 76.
    Yet SF, Perrella MA, Layne MD et al (1999) Hypoxia induces severe right ventricular dilatation and infarction in heme oxygenase-1 null mice. J Clin Invest 103(8):R23–R29PubMedCrossRefGoogle Scholar
  77. 77.
    Yoneyama M, Kikuchi M, Natsukawa T et al (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5(7):730–737PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Businees Media, LLC 2011

Authors and Affiliations

  1. 1.Biomedical Sciences Research Center “Al. Fleming”Institute of ImmunologyVariGreece

Personalised recommendations