Strategies and Implications for Prime-Boost Vaccination to Generate Memory CD8 T Cells

Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 780)


Generating a large population of memory CD8 T cells is an appealing goal for vaccine design against a variety of human diseases. Indeed, experimental models have demonstrated that the overall number of memory CD8 T cells present at the time of infection correlates strongly with the ability to confer host protection against a range of different pathogens. Currently, the most conceivable approach to rapidly generate a large population of memory CD8 T cells is through the use of prime-boost vaccination. In addition, recent experimental findings have uncovered important principles that govern both the rate and magnitude of memory CD8 T cell formation. Thus, this has resulted in novel prime-boost vaccination strategies that could potentially be used in humans to generate protective populations of memory CD8 T cells.


Human Immunodeficiency Virus Primary Vaccination Primary Memory High Endothelial Venule Booster Immunization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Andre FE (2003) Vaccinology: past achievements, present roadblocks and future promises. Vaccine 21:593–595PubMedCrossRefGoogle Scholar
  2. 2.
    Araki K, Turner AP, Shaffer VO, Gangappa S, Keller SA, Bachmann MF, Larsen CP, Ahmed R (2009) mTOR regulates memory CD8 T-cell differentiation. Nature 460:108–112PubMedCrossRefGoogle Scholar
  3. 3.
    Badovinac VP, Harty JT (2006) Programming, demarcating, and manipulating CD8+ T-cell memory. Immunol Rev 211:67–80PubMedCrossRefGoogle Scholar
  4. 4.
    Badovinac VP, Harty JT (2007) Manipulating the rate of memory CD8+ T cell generation after acute infection. J Immunol 179:53–63PubMedGoogle Scholar
  5. 5.
    Badovinac VP, Messingham KA, Hamilton SE, Harty JT (2003) Regulation of CD8+ T cells undergoing primary and secondary responses to infection in the same host. J Immunol 170:4933–4942PubMedGoogle Scholar
  6. 6.
    Badovinac VP, Messingham KA, Jabbari A, Haring JS, Harty JT (2005) Accelerated CD8+ T-cell memory and prime-boost response after dendritic-cell vaccination. Nat Med 11:748–756PubMedCrossRefGoogle Scholar
  7. 7.
    Badovinac VP, Porter BB, Harty JT (2002) Programmed contraction of CD8(+) T cells after infection. Nat Immunol 3:619–626PubMedCrossRefGoogle Scholar
  8. 8.
    Badovinac VP, Porter BB, Harty JT (2004) CD8+ T cell contraction is controlled by early inflammation. Nat Immunol 5:809–817PubMedCrossRefGoogle Scholar
  9. 9.
    Becker TC, Wherry EJ, Boone D, Murali-Krishna K, Antia R, Ma A, Ahmed R (2002) Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J Exp Med 195:1541–1548PubMedCrossRefGoogle Scholar
  10. 10.
    Bellone M (2000) Apoptosis, cross-presentation, and the fate of the antigen specific immune response. Apoptosis 5:307–314PubMedCrossRefGoogle Scholar
  11. 11.
    Blattman JN, Antia R, Sourdive DJ, Wang X, Kaech SM, Murali-Krishna K, Altman JD, Ahmed R (2002) Estimating the precursor frequency of naive antigen-specific CD8 T cells. J Exp Med 195:657–664PubMedCrossRefGoogle Scholar
  12. 12.
    Bousso P, Casrouge A, Altman JD, Haury M, Kanellopoulos J, Abastado JP, Kourilsky P (1998) Individual variations in the murine T cell response to a specific peptide reflect variability in naive repertoires. Immunity 9:169–178PubMedCrossRefGoogle Scholar
  13. 13.
    Brown SA, Surman SL, Sealy R, Jones BG, Slobod KS, Branum K, Lockey TD, Howlett N, Freiden P, Flynn P, Hurwitz JL (2010) Heterologous Prime-Boost HIV-1 Vaccination Regimens in Pre-Clinical and Clinical Trials. Viruses 2:435–467PubMedCrossRefGoogle Scholar
  14. 14.
    Cebere I, Dorrell L, McShane H, Simmons A, McCormack S, Schmidt C, Smith C, Brooks M, Roberts JE, Darwin SC et al (2006) Phase I clinical trial safety of DNA- and modified virus Ankara-vectored human immuno-deficiency virus type 1 (HIV-1) vaccines administered alone and in a prime-boost regime to healthy HIV-1-uninfected volunteers. Vaccine 24:417–425PubMedCrossRefGoogle Scholar
  15. 15.
    Chen G, Shankar P, Lange C, Valdez H, Skolnik PR, Wu L, Manjunath N, Lieberman J (2001) CD8 T cells specific for human immuno-deficiency virus, Epstein-Barr virus, and cytomegalovirus lack molecules for homing to lymphoid sites of infection. Blood 98:156–164PubMedCrossRefGoogle Scholar
  16. 16.
    Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, Mackey EW, Miller JD, Leslie AJ, DePierres C et al (2006) PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443:350–354PubMedCrossRefGoogle Scholar
  17. 17.
    Dunachie SJ, Walther M, Vuola JM, Webster DP, Keating SM, Berthoud T, Andrews L, Bejon P, Poulton I, Butcher G et al (2006) A clinical trial of prime-boost immunisation with the candidate malaria vaccines RTS, S/AS02A and MVA-CS. Vaccine 24:2850–2859PubMedCrossRefGoogle Scholar
  18. 18.
    Estcourt MJ, Ramsay AJ, Brooks A, Thomson SA, Medveckzy CJ, Ramshaw IA (2002) Prime-boost immunization generates a high frequency, high-avidity CD8(+) cytotoxic T lymphocyte population. Int Immunol 14:31–37PubMedCrossRefGoogle Scholar
  19. 19.
    Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR (2009) Memory T cells in non-lymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol 10:524–530PubMedCrossRefGoogle Scholar
  20. 20.
    Goldrath AW, Sivakumar PV, Glaccum M, Kennedy MK, Bevan MJ, Benoist C, Mathis D, Butz EA (2002) Cytokine requirements for acute and Basal homeostatic proliferation of naive and memory CD8+ T cells. J Exp Med 195:1515–1522PubMedCrossRefGoogle Scholar
  21. 21.
    Grayson JM, Harrington LE, Lanier JG, Wherry EJ, Ahmed R (2002) Differential sensitivity of naive and memory CD8+ T cells to apoptosis in vivo. J Immunol 169:3760–3770PubMedGoogle Scholar
  22. 22.
    Groscurth P, Filgueira L (1998) Killing mechanisms of cytotoxic T lymphocytes. News Physiol Sci 13:17–21PubMedGoogle Scholar
  23. 23.
    Hamdy S, Molavi O, Ma Z, Haddadi A, Alshamsan A, Gobti Z, Elhasi S, Samuel J, Lavasanifar A (2008) Co-delivery of cancer-associated antigen and toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine 26:5046–5057PubMedCrossRefGoogle Scholar
  24. 24.
    Hand TW, Morre M, Kaech SM (2007) Expression of IL-7 receptor alpha is necessary but not sufficient for the formation of memory CD8 T cells during viral infection. Proc Natl Acad Sci USA 104:11730–11735PubMedCrossRefGoogle Scholar
  25. 25.
    Haring JS, Badovinac VP, Harty JT (2006) Inflaming the CD8+ T cell response. Immunity 25:19–29PubMedCrossRefGoogle Scholar
  26. 26.
    Haring JS, Jing X, Bollenbacher-Reilley J, Xue HH, Leonard WJ, Harty JT (2008) Constitutive expression of IL-7 receptor alpha does not support increased expansion or prevent contraction of antigen-specific CD4 or CD8 T cells following Listeria monocytogenes infection. J Immunol 180:2855–2862PubMedGoogle Scholar
  27. 27.
    Harty JT, Badovinac VP (2008) Shaping and reshaping CD8+ T-cell memory. Nat Rev Immunol 8:107–119PubMedCrossRefGoogle Scholar
  28. 28.
    Heath WR, Belz GT, Behrens GM, Smith CM, Forehan SP, Parish IA, Davey GM, Wilson NS, Carbone FR, Villadangos JA (2004) Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 199:9–26PubMedCrossRefGoogle Scholar
  29. 29.
    Heath WR, Carbone FR (2001) Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 19:47–64PubMedCrossRefGoogle Scholar
  30. 30.
    Hill AV, Reyes-Sandoval A, O’Hara G, Ewer K, Lawrie A, Goodman A, Nicosia A, Folgori A, Colloca S, Cortese R et al (2010) Prime-boost vectored malaria vaccines: progress and prospects. Hum Vaccin 6:78–83PubMedCrossRefGoogle Scholar
  31. 31.
    Jabbari A, Harty JT (2006) Secondary memory CD8+ T cells are more protective but slower to acquire a central-memory phenotype. J Exp Med 203:919–932PubMedCrossRefGoogle Scholar
  32. 32.
    Jameson SC, Masopust D (2009) Diversity in T cell memory: an embarrassment of riches. Immunity 31:859–871PubMedCrossRefGoogle Scholar
  33. 33.
    Kaech SM, Hemby S, Kersh E, Ahmed R (2002) Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111:837–851PubMedCrossRefGoogle Scholar
  34. 34.
    Kaech SM, Wherry EJ, Ahmed R (2002) Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2:251–262PubMedCrossRefGoogle Scholar
  35. 35.
    Kedzierska K, Day EB, Pi J, Heard SB, Doherty PC, Turner SJ, Perlman S (2006) Quantification of repertoire diversity of influenza-specific epitopes with predominant public or private TCR usage. J Immunol 177:6705–6712PubMedGoogle Scholar
  36. 36.
    Kolibab K, Yang A, Derrick SC, Waldmann TA, Perera LP, Morris SL (2010) Highly persistent and effective prime/boost regimens against tuberculosis that use a multivalent modified vaccine virus Ankara-based tuberculosis vaccine with interleukin-15 as a molecular adjuvant. Clin Vaccine Immunol 17:793–801PubMedCrossRefGoogle Scholar
  37. 37.
    Leignadier J, Hardy MP, Cloutier M, Rooney J, Labrecque N (2008) Memory T-lymphocyte survival does not require T-cell receptor expression. Proc Natl Acad Sci USA 105:20440–20445PubMedCrossRefGoogle Scholar
  38. 38.
    Masopust D, Choo D, Vezys V, Wherry EJ, Duraiswamy J, Akondy R, Wang J, Casey KA, Barber DL, Kawamura KS et al (2010) Dynamic T cell migration program provides resident memory within intestinal epithelium. J Exp Med 207:553–564PubMedCrossRefGoogle Scholar
  39. 39.
    Masopust D, Ha SJ, Vezys V, Ahmed R (2006) Stimulation history dictates memory CD8 T cell phenotype: implications for prime-boost vaccination. J Immunol 177:831–839PubMedGoogle Scholar
  40. 40.
    Masopust D, Vezys V, Marzo AL, Lefrancois L (2001) Preferential localization of effector memory cells in nonlymphoid tissue. Science 291:2413–2417PubMedCrossRefGoogle Scholar
  41. 41.
    McShane H (2002) Prime-boost immunization strategies for infectious diseases. Curr Opin Mol Ther 4:23–27PubMedGoogle Scholar
  42. 42.
    Mescher MF, Curtsinger JM, Agarwal P, Casey KA, Gerner M, Hammerbeck CD, Popescu F, Xiao Z (2006) Signals required for programming effector and memory development by CD8+ T cells. Immunol Rev 211:81–92PubMedCrossRefGoogle Scholar
  43. 43.
    Moon JJ, Chu HH, Pepper M, McSorley SJ, Jameson SC, Kedl RM, Jenkins MK (2007) Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27:203–213PubMedCrossRefGoogle Scholar
  44. 44.
    Murali-Krishna K, Lau LL, Sambhara S, Lemonnier F, Altman J, Ahmed R (1999) Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 286:1377–1381PubMedCrossRefGoogle Scholar
  45. 45.
    Obar JJ, Khanna KM, Lefrancois L (2008) Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection. Immunity 28:859–869PubMedCrossRefGoogle Scholar
  46. 46.
    Pearce EL, Shen H (2007) Generation of CD8 T cell memory is regulated by IL-12. J Immunol 179:2074–2081PubMedGoogle Scholar
  47. 47.
    Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS, Jones RG, Choi Y (2009) Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460:103–107PubMedCrossRefGoogle Scholar
  48. 48.
    Pham NL, Badovinac VP, Harty JT (2009) A default pathway of memory CD8 T cell differentiation after dendritic cell immunization is deflected by encounter with inflammatory cytokines during antigen-driven proliferation. J Immunol 183:2337–2348PubMedCrossRefGoogle Scholar
  49. 49.
    Pham NL, Pewe LL, Fleenor CJ, Langlois RA, Legge KL, Badovinac VP, Harty JT (2010) Exploiting cross-priming to generate protective CD8 T-cell immunity rapidly. Proc Natl Acad Sci USA 107:12198–12203PubMedCrossRefGoogle Scholar
  50. 50.
    Prlic M, Bevan MJ (2009) Immunology: a metabolic switch to memory. Nature 460:41–42PubMedCrossRefGoogle Scholar
  51. 51.
    Ramshaw IA, Ramsay AJ (2000) The prime-boost strategy: exciting prospects for improved vaccination. Immunol Today 21:163–165PubMedCrossRefGoogle Scholar
  52. 52.
    Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–712PubMedCrossRefGoogle Scholar
  53. 53.
    Schlosser E, Mueller M, Fischer S, Basta S, Busch DH, Gander B, Groettrup M (2008) TLR ligands and antigen need to be co-encapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine 26:1626–1637PubMedCrossRefGoogle Scholar
  54. 54.
    Schmidt NW, Podyminogin RL, Butler NS, Badovinac VP, Tucker BJ, Bahjat KS, Lauer P, Reyes-Sandoval A, Hutchings CL, Moore AC et al (2008) Memory CD8 T cell responses exceeding a large but definable threshold provide long-term immunity to malaria. Proc Natl Acad Sci USA 105:14017–14022PubMedCrossRefGoogle Scholar
  55. 55.
    Seder RA, Hill AV (2000) Vaccines against intracellular infections requiring cellular immunity. Nature 406:793–798PubMedCrossRefGoogle Scholar
  56. 56.
    Shen H, Ackerman AL, Cody V, Giodini A, Hinson ER, Cresswell P, Edelson RL, Saltzman WM, Hanlon DJ (2006) Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117:78–88PubMedCrossRefGoogle Scholar
  57. 57.
    Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21:685–711PubMedCrossRefGoogle Scholar
  58. 58.
    Surh CD, Sprent J (2008) Homeostasis of naive and memory T cells. Immunity 29:848–862PubMedCrossRefGoogle Scholar
  59. 59.
    Unsoeld H, Pircher H (2005) Complex memory T-cell phenotypes revealed by co-expression of CD62L and CCR7. J Virol 79:4510–4513PubMedCrossRefGoogle Scholar
  60. 60.
    Wherry EJ, Teichgraber V, Becker TC, Masopust D, Kaech SM, von Antia R, Andrian UH, Ahmed R (2003) Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 4:225–234PubMedCrossRefGoogle Scholar
  61. 61.
    Woodland DL (2004) Jump-starting the immune system: prime-boosting comes of age. Trends Immunol 25:98–104PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Businees Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Microbiology and Interdisciplinary Graduate Program in ImmunologyUniversity of IowaIowa CityUSA

Personalised recommendations