Influenza Vaccines: What Do We Want and How Can We Get It?

  • Felix Geeraedts
  • Anke Huckriede
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 780)


Influenza vaccines have been in use for more than 60 years and have proven to be efficacious in protecting from influenza infections during epidemics and the recent H1N1 pandemic. The development of influenza vaccines has so far been largely based on empirical grounds, which leaves room for vaccine improvement by implementation of recent insights in innate and adaptive immunity. Also, evaluation and approval of new vaccines rely on rather broad correlates of protection such as the hemagglutination inhibition titre, thereby neglecting qualitative aspects of the immune response. Here we discuss how current inactivated influenza vaccine formulations differ in the type of immune response they elcit, their protective capacity, and what causes these differences. Finally, we will discuss how this knowledge can guide the development of new adjuvants that optimize the protective efficacy of influenza vaccines.


Influenza Vaccine Hemagglutination Inhibition Aluminium Salt Immune Phenotype Intranasal Immunization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Jan Wilschut, at the University Medical Center Groningen, for helpful comments on the manuscript. F.G. worked under the auspices of the Netherlands Influenza Vaccine Research Centre (NIVAREC), which is financially supported by the Netherlands Organisation for Health Research and Development (ZonMw).


  1. 1.
    Stöhr K, Kieny MP, Wood D (2006) Influenza pandemic vaccines: how to ensure a low-cost, low-dose option. Nat Rev Microbiol 4:565–566PubMedCrossRefGoogle Scholar
  2. 2.
    Johnson NP, Mueller J (2002) Updating the accounts: global mortality of the 1918–1920 “Spanish” influenza pandemic. Bull Hist Med 76:105–115PubMedCrossRefGoogle Scholar
  3. 3.
    Bautista E, Chotpitayasunondh T, Gao Z, Harper SA, Shaw M, Uyeki TM, Zaki SR, Hayden FG, Hui DS, Kettner JD, Kumar A, Lim M, Shindo N, Penn C, Nicholson KG (2010) Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection. Writing committee of the WHO Consultation on clinical aspects of pandemic (H1N1) 2009 Influenza. N Engl J Med 362:1708–1719PubMedCrossRefGoogle Scholar
  4. 4.
    Taubenberger JK, Morens DM (2008) The pathology of influenza virus infections. Annu Rev Pathol 3:499–522PubMedCrossRefGoogle Scholar
  5. 5.
    Rothbarth PH, Groen J, Bohnen AM, de Groot R, Osterhaus AD (1999) Influenza virus serology–a comparative study. J Virol Methods 78:163–169PubMedCrossRefGoogle Scholar
  6. 6.
    Román E, Miller E, Harmsen A, Wiley J, Von Andrian UH, Huston G, Swain SL (2002) CD4 effector T cell subsets in the response to influenza: heterogeneity, migration, and function. J Exp Med 196:957–968PubMedCrossRefGoogle Scholar
  7. 7.
    Boon AC, Fringuelli E, Graus YM, Fouchier RA, Sintnicolaas K, Iorio AM, Rimmelzwaan GF, Osterhaus AD (2002) Influenza A virus specific T cell immunity in humans during aging. Virology 299:100–108PubMedCrossRefGoogle Scholar
  8. 8.
    Neumann G, Noda T, Kawaoka Y (2009) Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459:931–939PubMedCrossRefGoogle Scholar
  9. 9.
    Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG (2005) Characterization of the 1918 influenza virus polymerase genes. Nature 437:889–893PubMedCrossRefGoogle Scholar
  10. 10.
    Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team, Dawood FS, Jain S, Finelli L, Shaw MW, Lindstrom S, Garten RJ, Gubareva LV, Xu X, Bridges CB, Uyeki TM (2009) Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 360:2605–2615PubMedCrossRefGoogle Scholar
  11. 11.
  12. 12.
    Yang Y, Halloran ME, Sugimoto JD, Longini IM Jr (2007) Detecting human-to-human transmission of avian influenza A (H5N1). Emerg Infect Dis 13:1348–1353PubMedGoogle Scholar
  13. 13.
    Nichol KL, Treanor JJ (2006) Vaccines for seasonal and pandemic influenza. J Infect Dis 194(Suppl 2):S111–S118PubMedCrossRefGoogle Scholar
  14. 14.
    Wood JM, Williams MS (1998) History of inactivated influenza vaccines. In: Nicholson KG, Webster RG, Hay AJ (eds) Textbook of Influenza. Blackwell Science, Oxford, pp 317–323Google Scholar
  15. 15.
    Ehrlich HJ, Müller M, Oh HM, Tambyah PA, Joukhadar C, Montomoli E, Fisher D, Berezuk G, Fritsch S, Löw-Baselli A, Vartian N, Bobrovsky R, Pavlova BG, Pöllabauer EM, Kistner O, Barrett PN, Baxter H5N1 Pandemic Influenza Vaccine Clinical Study Team (2008) A clinical trial of a whole-virus H5N1 vaccine derived from cell culture. N Engl J Med 358:2573–2584PubMedCrossRefGoogle Scholar
  16. 16.
    Kistner O, Crowe BA, Wodal W, Kerschbaum A, Savidis-Dacho H, Sabarth N, Falkner FG, Mayerhofer I, Mundt W, Reiter M, Grillberger L, Tauer C, Graninger M, Sachslehner A, Schwendinger M, Brühl P, Kreil TR, Ehrlich HJ, Barrett PN (2010) A whole virus pandemic influenza H1N1 vaccine is highly immunogenic and protective in active immunization and passive protection mouse models. PLoS ONE 5:e9349PubMedCrossRefGoogle Scholar
  17. 17.
    Vajo Z, Tamas F, Sinka L, Jankovics I (2010) Safety and immunogenicity of a 2009 pandemic influenza A H1N1 vaccine when administered alone or simultaneously with the seasonal influenza vaccine for the 2009–10 influenza season: a multicentre, randomised controlled trial. Lancet 375:49–55PubMedCrossRefGoogle Scholar
  18. 18.
    Waddington CS, Walker WT, Oeser C, Reiner A, John T, Wilkins S, Casey M, Eccleston PE, Allen RJ, Okike I, Ladhani S, Sheasby E, Hoschler K, Andrews N, Waight P, Collinson AC, Heath PT, Finn A, Faust SN, Snape MD, Miller E, Pollard AJ (2010) Safety and immunogenicity of AS03B adjuvanted split virion versus non-adjuvanted whole virion H1N1 influenza vaccine in UK children aged 6 months-12 years: open label, randomised, parallel group, multicentre study. Brit Med J 340:c2649. doi: 10.1136/bmj.c2649 PubMedCrossRefGoogle Scholar
  19. 19.
    Leroux-Roels G (2009) Pre-pandemic H5N1 influenza vaccine adjuvanted with AS03: a review of the pre-clinical and clinical data. Expert Opin Biol Ther 9:1057–1071PubMedCrossRefGoogle Scholar
  20. 20.
    de Jong JC, Palache AM, Beyer WE, Rimmelzwaan GF, Boon AC, Osterhaus AD (2003) Haemagglutination-inhibiting antibody to influenza virus. Dev Biol Basel 115:63–73PubMedGoogle Scholar
  21. 21.
    Beyer WE, Palache AM, Osterhaus AD (1998) Comparison of serology and reactogenicity between influenza sub-unit vaccines and whole virus or split vaccines: a review and meta-analysis of the literature. Clin Drug Investig 15:1–12PubMedGoogle Scholar
  22. 22.
    Nicholson KG, Tyrrell DA, Harrison P, Potter CW, Jennings R, Clark A, Schild GC, Wood JM, Yetts R, Seagroatt V, Huggins A, Anderson SG (1979) Clinical studies of monovalent inactivated whole virus and sub-unit A/USSR/77 (H1N1) vaccine: serological responses and clinical reactions. J Biol Stand 7:123–136PubMedCrossRefGoogle Scholar
  23. 23.
    Stephenson I, Nicholson KG, Glück R, Mischler R, Newman RW, Palache AM, Verlander NQ, Warburton F, Wood JM, Zambon MC (2003) Safety and antigenicity of whole virus and sub-unit influenza A/Hong Kong/1073/99 (H9N2) vaccine in healthy adults: phase I randomised trial. Lancet 362:1959–1966PubMedCrossRefGoogle Scholar
  24. 24.
  25. 25.
    Hovden AO, Cox RJ, Madhun A, Haaheim LR (2005) Two doses of parenterally administered split influenza virus vaccine elicited high serum IgG concentrations which effectively limited viral shedding upon challenge in mice. Scand J Immunol 62:342–352 (access May 20, 2011)PubMedCrossRefGoogle Scholar
  26. 26.
    Bungener L, Geeraedts F, Ter Veer W, Medema J, Wilschut J, Huckriede A (2008) Alum boosts TH2-type antibody responses to whole-inactivated virus influenza vaccine in mice but does not confer superior protection. Vaccine 26:2350–2359PubMedCrossRefGoogle Scholar
  27. 27.
    Hagenaars N, Mastrobattista E, Glansbeek H, Heldens J, van den Bosch H, Schijns V, Betbeder D, Vromans H, Jiskoot W (2008) Head-to-head comparison of four nonadjuvanted inactivated cell culture-derived influenza vaccines: effect of composition, spatial organization and immunization route on the immunogenicity in a murine challenge model. Vaccine 26:6555–6563PubMedCrossRefGoogle Scholar
  28. 28.
    Hovden AO, Cox RJ, Haaheim LR (2005) Whole influenza virus vaccine is more immunogenic than split influenza virus vaccine and induces primarily an IgG2a response in BALB/c mice. Scand J Immunol 62:36–44PubMedCrossRefGoogle Scholar
  29. 29.
    Geeraedts F, Bungener L, Pool J, ter Veer W, Wilschut J, Huckriede A (2008) Whole inactivated virus influenza vaccine is superior to sub-unit vaccine in inducing immune responses and secretion of pro-inflammatory cytokines by DCs. Influenza Other Respi Viruses 2:41–51PubMedCrossRefGoogle Scholar
  30. 30.
    Geeraedts F, Goutagny N, Hornung V, Severa M, de Haan A, Pool J, Wilschut J, Fitzgerald KA, Huckriede A (2008) Superior immunogenicity of inactivated whole virus H5N1 influenza vaccine is primarily controlled by Toll-like receptor signaling. PLoS Pathog 4:e1000138PubMedCrossRefGoogle Scholar
  31. 31.
    Huber VC, McKeon RM, Brackin MN, Miller LA, Keating R, Brown SA, Makarova N, Perez DR, Macdonald GH, McCullers JA (2006) Distinct contributions of vaccine-induced immunoglobulin G1 (IgG1) and IgG2a antibodies to protective immunity against influenza. Clin Vaccine Immunol 13:981–990PubMedCrossRefGoogle Scholar
  32. 32.
    Saurwein-Teissl M, Zisterer K, Schmitt TL, Glück R, Cryz S, Grubeck-Loebenstein B (1998) Whole virus influenza vaccine activates dendritic cells (DC) and stimulates cytokine production by peripheral blood mononuclear cells (PBMC) while sub-unit vaccines support T cell proliferation. Clin Exp Immunol 114:271–276PubMedCrossRefGoogle Scholar
  33. 33.
    Koyama S, Aoshi T, Tanimoto T, Kumagai Y, Kobiyama K, Tougan T, Sakurai K, Coban C, Horii T, Akira S, Ishii KJ (2010) Plasmacytoid dendritic cells delineate immunogenicity of influenza vaccine subtypes. Sci Transl Med 2:25ra24PubMedCrossRefGoogle Scholar
  34. 34.
    Proietti E, Bracci L, Puzelli S, Di Pucchio T, Sestili P, De Vincenzi E, Venditti M, Capone I, Seif I, De Maeyer E, Tough D, Donatelli I, Belardelli F (2002) Type I IFN as a natural adjuvant for a protective immune response: lessons from the influenza vaccine model. J Immunol 169:375–383PubMedGoogle Scholar
  35. 35.
    Le Bon A, Schiavoni G, D’Agostino G, Gresser I, Belardelli F, Tough DF (2001) Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 14:461–470PubMedCrossRefGoogle Scholar
  36. 36.
    Coro ES, Chang WL, Baumgarth N (2006) Type I IFN receptor signals directly stimulate local B cells early following influenza virus infection. J Immunol 176:4343–4351PubMedGoogle Scholar
  37. 37.
    Chang WL, Coro ES, Rau FC, Xiao Y, Erle DJ, Baumgarth N (2007) Influenza virus infection causes global respiratory tract B cell response modulation via innate immune signals. J Immunol 178:1457–1467PubMedGoogle Scholar
  38. 38.
    Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529–1531PubMedCrossRefGoogle Scholar
  39. 39.
    Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdörfer B, Giese T, Endres S, Hartmann G (2002) Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168:4531–4537PubMedGoogle Scholar
  40. 40.
    Barr TA, Brown S, Mastroeni P, Gray D (2009) B cell intrinsic MyD88 signals drive IFN-gamma production from T cells and control switching to IgG2c. J Immunol 183:1005–1012PubMedCrossRefGoogle Scholar
  41. 41.
    Heer AK, Shamshiev A, Donda A, Uematsu S, Akira S, Kopf M, Marsland BJ (2007) TLR signaling fine-tunes anti-influenza B cell responses without regulating effector T cell responses. J Immunol 178:2182–2191PubMedGoogle Scholar
  42. 42.
    Bekeredjian-Ding IB, Wagner M, Hornung V, Giese T, Schnurr M, Endres S, Hartmann G (2005) Plasmacytoid dendritic cells control TLR7 sensitivity of naive B cells via type I IFN. J Immunol 174:4043–4050PubMedGoogle Scholar
  43. 43.
    Miyaki C, Quintilio W, Miyaji EN, Botosso VF, Kubrusly FS, Santos FL, Iourtov D, Higashi HG, Raw I (2010) Production of H5N1 (NIBRG-14) inactivated whole virus and split virion influenza vaccines and analysis of immunogenicity in mice using different adjuvant formulations. Vaccine 28:2505–2509PubMedCrossRefGoogle Scholar
  44. 44.
    Skountzou I, Martin MP, Wang B, Ye L, Koutsonanos D, Weldon W, Jacob J, Compans RW (2010) Salmonella flagellins are potent adjuvants for intranasally administered whole inactivated influenza vaccine. Vaccine 28:4103–4112PubMedCrossRefGoogle Scholar
  45. 45.
    Asahi-Ozaki Y, Itamura S, Ichinohe T, Strong P, Tamura S, Takahashi H, Sawa H, Moriyama M, Tashiro M, Sata T, Kurata T, Hasegawa H (2006) Intranasal administration of adjuvant-combined recombinant influenza virus HA vaccine protects mice from the lethal H5N1 virus infection. Microbes Infect 8:2706–2714PubMedCrossRefGoogle Scholar
  46. 46.
    Riedl K, Riedl R, von Gabain A, Nagy E, Lingnau K (2008) The novel adjuvant IC31 strongly improves influenza vaccine-specific cellular and humoral immune responses in young adult and aged mice. Vaccine 26:3461–3468PubMedCrossRefGoogle Scholar
  47. 47.
  48. 48.
    Eickhoff TC, Myers M (2002) Workshop summary. aluminum in vaccines. Vaccine 20(Suppl 3):S1–S4PubMedCrossRefGoogle Scholar
  49. 49.
    Marrack P, McKee AS, Munks MW (2009) Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol 9:287–293PubMedCrossRefGoogle Scholar
  50. 50.
    Keitel WA, Atmar RL (2009) Vaccines for pandemic influenza: summary of recent clinical trials. Curr Top Microbiol Immunol 333:431–451PubMedCrossRefGoogle Scholar
  51. 51.
  52. 52.
  53. 53.
    Ninomiya A, Imai M, Tashiro M, Odagiri T (2007) Inactivated influenza H5N1 whole-virus vaccine with aluminum adjuvant induces homologous and heterologous protective immunities against lethal challenge with highly pathogenic H5N1 avian influenza viruses in a mouse model. Vaccine 25:3554–3560PubMedCrossRefGoogle Scholar
  54. 54.
    Schultze V, D’Agosto V, Wack A, Novicki D, Zorn J, Hennig R (2008) Safety of MF59 adjuvant. Vaccine 26:3209–3222PubMedCrossRefGoogle Scholar
  55. 55.
    Nicholson KG, Colegate AE, Podda A, Stephenson I, Wood J, Ypma E, Zambon MC (2001) Safety and antigenicity of non-adjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: a randomised trial of two potential vaccines against H5N1 influenza. Lancet 357:1937–1943PubMedCrossRefGoogle Scholar
  56. 56.
    Stephenson I, Bugarini R, Nicholson KG, Podda A, Wood JM, Zambon MC, Katz JM (2005) Cross-reactivity to highly pathogenic avian influenza H5N1 viruses after vaccination with non-adjuvanted and MF59-adjuvanted influenza /Duck/Singapore/97 (H5N3) vaccine: a potential priming strategy. J Infect Dis 191:1210–1215PubMedCrossRefGoogle Scholar
  57. 57.
    Banzhoff A, Gasparini R, Laghi-Pasini F, Staniscia T, Durando P, Montomoli E, Capecchi PL, di Giovanni P, Sticchi L, Gentile C, Hilbert A, Brauer V, Tilman S, Podda A (2009) MF59-adjuvanted H5N1 vaccine induces immunologic memory and heterotypic antibody responses in non-elderly and elderly adults. PLoS ONE 4:e4384PubMedCrossRefGoogle Scholar
  58. 58.
    Khurana S, Chearwae W, Castellino F, Manischewitz J, King LR, Honorkiewicz A, Rock MT, Edwards KM, Del Giudice G, Rappuoli R, Golding H (2010) Vaccines with MF59 adjuvant expand the antibody repertoire to target protective sites of pandemic avian H5N1 influenza virus. Sci Transl Med 2:15ra5PubMedCrossRefGoogle Scholar
  59. 59.
    Tritto E, Mosca F, De Gregorio E (2009) Mechanism of action of licensed vaccine adjuvants. Vaccine 27:3331–3334PubMedCrossRefGoogle Scholar
  60. 60.
    Baudner BC, Ronconi V, Casini D, Tortoli M, Kazzaz J, Singh M, Hawkins LD, Wack A, O’Hagan DT (2009) MF59 emulsion is an effective delivery system for a synthetic TLR4 agonist (E6020). Pharm Res 26:1477–1485PubMedCrossRefGoogle Scholar
  61. 61.
    Forrest HL, Khalenkov AM, Govorkova EA, Kim JK, Del Giudice G, Webster RG (2009) Single- and multiple-clade influenza A H5N1 vaccines induce cross protection in ferrets. Vaccine 27:4187–4195PubMedCrossRefGoogle Scholar
  62. 62.
    Galli G, Medini D, Borgogni E, Zedda L, Bardelli M, Malzone C, Nuti S, Tavarini S, Sammicheli C, Hilbert AK, Brauer V, Banzhoff A, Rappuoli R, Del Giudice G, Castellino F (2009) Adjuvanted H5N1 vaccine induces early CD4+ T cell response that predicts long-term persistence of protective antibody levels. Proc Natl Acad Sci USA 106:3877–3882PubMedCrossRefGoogle Scholar
  63. 63.
    Wichmann O, Stocker P, Poggensee G, Altmann D, Walter D, Hellenbrand W, Krause G, Eckmanns T (2010) Pandemic influenza A(H1N1) 2009 breakthrough infections and estimates of vaccine effectiveness in Germany 2009–2010. Euro Surveill 15:pii: 19561Google Scholar
  64. 64.
    Baras B, Stittelaar KJ, Simon JH, Thoolen RJ, Mossman SP, Pistoor FH, van Amerongen G, Wettendorff MA, Hanon E, Osterhaus AD (2008) Cross-protection against lethal H5N1 challenge in ferrets with an adjuvanted pandemic influenza vaccine. PLoS ONE 3:e1401PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Businees Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Medical Microbiology, Molecular Virology SectionUniversity Medical Center Groningen and University of GroningenGroningenThe Netherlands

Personalised recommendations