Murine Model of Chronic Respiratory Inflammation

  • Amit A. Lugade
  • Paul N. Bogner
  • Yasmin Thanavala
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 780)


The respiratory mucosa is exposed to the external environment each time we breathe and therefore requires a robust and sophisticated immune defense system. As with other mucosal sites, the respiratory mucosal immune system must balance its response to pathogens while also regulating inflammatory immune cell-mediated tissue damage. In the airways, a failure to tightly control immune responses to a pathogen can result in chronic inflammation and tissue destruction with an overzealous response being deleterious for the host. Chronic obstructive pulmonary disease (COPD) is the fourth most common cause of death in the US and both the prevalence of and mortality rate of this disease is increasing annually. COPD is characterized by intermittent disease exacerbation. The causal contribution of bacterial infections to exacerbations of COPD is now widely accepted, accounting for at least 50% of all exacerbations. Non-typeable Haemophilus influenzae and Moraxella catarrhalis (both gram-negative bacteria) along with Streptococcus pneumoniae (a gram-positive bacterium) are the three most common bacterial pathogens that cause respiratory tract infections in COPD patients. The colonization of bacteria in the lower airways is similar to a low-grade smoldering infection that induces chronic airway inflammation. Chronic low-grade infection can induce a persistent inflammatory response in the airways and parenchyma. Inefficient removal of bacteria from the lower respiratory tract is characteristic of chronic bronchitis. Inflammation is believed to be central to the pathogenesis of exacerbations, but a clear understanding of the inflammatory changes during an exacerbation of COPD has yet to emerge. As bacterial colonization of the lung in COPD patients is a chronic inflammatory condition highlighted by frequent bouts of exacerbation and clearance, we sought to reproduce this chronic pathogen-mediated inflammation in a murine model by repeatedly delivering the intact, whole, live bacteria intra-tracheally to the lungs.


Chronic Obstructive Pulmonary Disease Respiratory Syncytial Virus Chronic Obstructive Pulmonary Disease Patient Alveolar Macrophage Chronic Obstructive Pulmonary Disease Exacerbation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by a grant from NIH AI069379 to Yasmin Thanavala.


  1. 1.
    Mizgerd JP (2006) Lung infection – a public health priority. PLoS Med 3:e76PubMedCrossRefGoogle Scholar
  2. 2.
    Palm NW, Medzhitov R (2007) Not so fast: adaptive suppression of innate immunity. Nat Med 13:1142–1143PubMedCrossRefGoogle Scholar
  3. 3.
    Didierlaurent A, Goulding J, Hussell T (2007) The impact of successive infections on the lung microenvironment. Immunology 122:457–465PubMedCrossRefGoogle Scholar
  4. 4.
    Chen HD, Fraire AE, Joris I, Welsh RM, Selin LK (2003) Specific history of heterologous virus infections determines anti-viral immunity and immunopathology in the lung. Am J Pathol 163:1341–1355PubMedCrossRefGoogle Scholar
  5. 5.
    Beadling C, Slifka MK (2004) How do viral infections predispose patients to bacterial infections? Curr Opin Infect Dis 17:185–191PubMedCrossRefGoogle Scholar
  6. 6.
    Peltola VT, McCullers JA (2004) Respiratory viruses predisposing to bacterial infections: role of +neuraminidase. Pediatr Infect Dis J 23:S87–S97PubMedCrossRefGoogle Scholar
  7. 7.
    Murphy TF (2006) The role of bacteria in airway inflammation in exacerbations of chronic obstructive pulmonary disease. Curr Opin Infect Dis 19:225–230PubMedCrossRefGoogle Scholar
  8. 8.
    Murphy TF (2003) Respiratory infections caused by non-typeable Haemophilus influenzae. Curr Opin Infect Dis 16:129–134PubMedCrossRefGoogle Scholar
  9. 9.
    Bandi V, Jakubowycz M, Kinyon C, Mason EO, Atmar RL, Greenberg SB, Murphy TF (2003) Infectious exacerbations of chronic obstructive pulmonary disease associated with respiratory viruses and non-typeable Haemophilus influenzae. FEMS Immunol Med Microbiol 37:69–75PubMedCrossRefGoogle Scholar
  10. 10.
    St Geme JW 3rd (2000) The pathogenesis of non-typeable Haemophilus influenzae otitis media. Vaccine 19:S41–S50PubMedCrossRefGoogle Scholar
  11. 11.
    National Heart, Lung and Blood Institute (1998) Morbidity and mortality chartbook on cardiovascular, lung and blood diseases. National Institutes of Health, 1998 Bethesda, MDGoogle Scholar
  12. 12.
    Gross CP, Anderson GF, Powe NR (1999) The relation between funding by the National Institutes of Health and the burden of disease. N Engl J Med 340:1881–1887PubMedCrossRefGoogle Scholar
  13. 13.
    Vollmer WM, Osborne ML, Buist AS (1998) Twenty year trends in the prevalence of asthma and chronic airflow obstruction in an HMO. Am J Respir Crit Care Med 157:1079–1084PubMedGoogle Scholar
  14. 14.
    Janson C, Chinn S, Jarvis D, Zock JP, Toren K, Burney P (2001) Effect of passive smoking on respiratory symptoms, bronchial responsiveness, lung function, and total serum IgE in the European Community Health Survey: a cross-sectional study. Lancet 358:2103–2109PubMedCrossRefGoogle Scholar
  15. 15.
    Chalmers GW, MacLeod KJ, Thomson L, Little SA, McSharry C, Thomson NC (2001) Smoking and airway inflammation in patients with mild asthma. Chest 120:1917–1922PubMedCrossRefGoogle Scholar
  16. 16.
    Vassallo R, Tamada K, Lau JS, Kroening PR, Chen L (2005) Cigarette smoke extract suppresses human dendritic cell function leading to preferential induction of Th-2 priming. J Immunol 175:2684–2691PubMedGoogle Scholar
  17. 17.
    Larsson L, Szponar B, Ridha B, Pehrson C, Dutkiewicz J, Krysińska-Traczyk E, Sitkowska J (2008) Identification of bacterial and fungal components in tobacco and tobacco smoke. Tob Induc Dis 4:4PubMedCrossRefGoogle Scholar
  18. 18.
    Li YT, He B, Wang YZ (2009) Exposure to cigarette smoke upregulates AP-1 activity and induces TNF-alpha overexpression in mouse lungs. Inhal Toxicol 21:641–647PubMedCrossRefGoogle Scholar
  19. 19.
    Shizu M, Itoh Y, Sunahara R, Chujo S, Hayashi H, Ide Y, Takii T, Koshiko M, Chung SW, Hayakawa K, Miyazawa K, Hirose K, Onozaki K (2008) Cigarette smoke condensate upregulates the gene and protein expression of pro-inflammatory cytokines in human fibroblast-like synoviocyte line. J Interferon Cytokine Res 28:509–521PubMedCrossRefGoogle Scholar
  20. 20.
    Mortaz E, Kraneveld AD, Smit JJ, Kool M, Lambrecht BN, Kunkel SL, Lukacs NW, Nijkamp FP, Folkerts G (2009) Effect of cigarette smoke extract on dendritic cells and their impact on T-cell proliferation. PLoS ONE 4:e4946PubMedCrossRefGoogle Scholar
  21. 21.
    Leeder SR (1975) Role of infection in the cause and course of chronic bronchitis and emphysema. J Infect Dis 131:731–742PubMedCrossRefGoogle Scholar
  22. 22.
    Tager I, Speizer FE (1975) Role of infection in chronic bronchitis. N Engl J Med 292:563–571PubMedCrossRefGoogle Scholar
  23. 23.
    Soler N, Torres A, Ewig S, Gonzalez J, Celis R, El-Ebiary M, Hernandez C, Rodriquez-Roisin R (1998) Bronchial microbial patterns in severe exacerbations of chronic obstructive pulmonary disease (COPD) requiring mechanical ventilation. Am J Respir Crit Care Med 157:1498–1505PubMedGoogle Scholar
  24. 24.
    Sethi S, Murphy TF (2001) Bacterial infection in chronic obstructive pulmonary disease in 2000: a State-of-the-Art Review. Clin Microbiol Rev 14:336–363PubMedCrossRefGoogle Scholar
  25. 25.
    Murphy TF (2003) Respiratory infections caused by non-typeable Haemophilus influenzae. Curr Opin Infect Dis 16:129–134PubMedCrossRefGoogle Scholar
  26. 26.
    Stämpfli MR, Anderson GP (2009) How cigarette smoke skews immune responses to promote infection, lung disease and cancer. Nat Rev Immunol 9:377–384PubMedCrossRefGoogle Scholar
  27. 27.
    Domagala-Kulawik J (2008) Effects of cigarette smoke on the lung and systemic immunity. J Physiol Pharmacol 59:19–34PubMedGoogle Scholar
  28. 28.
    Mehta H, Nazzal K, Sadikot RT (2008) Cigarette smoking and innate immunity. Inflamm Res 57:497–503PubMedCrossRefGoogle Scholar
  29. 29.
    Thomson NC, Chaudhuri R (2009) Asthma in smokers: challenges and opportunities. Curr Opin Pulm Med 15:39–45PubMedCrossRefGoogle Scholar
  30. 30.
    Holt PG (1987) Immune and inflammatory function in cigarette smokers. Thorax 42:241–249PubMedCrossRefGoogle Scholar
  31. 31.
    Arcavi L, Benowitz NL (2004) Cigarette smoking and infection. Arch Intern Med 164:2206–2216PubMedCrossRefGoogle Scholar
  32. 32.
    Smith CJ, Hansch C (2000) The relative toxicity of compounds in mainstream cigarette smoke condensate. Food Chem Toxicol 38:637–646PubMedCrossRefGoogle Scholar
  33. 33.
    de Boer WI, Sont JK, van Schadewijk A, Stolk J, van Krieken JH, Hiemstra PS (2000) Monocyte chemo-attractant protein 1, interleukin 8, and chronic airways inflammation in COPD. J Pathol 190:619–626PubMedCrossRefGoogle Scholar
  34. 34.
    Edwards D (2009) Immunological effects of tobacco smoking in “healthy” smokers. COPD 6:48–58PubMedCrossRefGoogle Scholar
  35. 35.
    Russell RE, Thorley A, Culpitt SV, Dodd S, Donnelly LE, Demattos C, Fitzgerald M, Barnes PJ (2002) Alveolar macrophage-mediated elastolysis: roles of matrix metalloproteinases, cysteine, and serine proteases. Am J Physiol Lung Cell Mol Physiol 283:L867–L873PubMedGoogle Scholar
  36. 36.
    De Serres G, Lampron N, La Forge J, Rouleau I, Bourbeau J, Weiss K, Barret B, Boivin G (2009) Importance of viral and bacterial infections in chronic obstructive pulmonary disease exacerbations. J Clin Virol 46:129–133PubMedCrossRefGoogle Scholar
  37. 37.
    Sköld CM, Lundahl J, Halldén G, Hallgren M, Eklund A (1996) Chronic smoke exposure alters the phenotype pattern and the metabolic response in human alveolar macrophages. Clin Exp Immunol 106:108–113PubMedCrossRefGoogle Scholar
  38. 38.
    Mancini NM, Béné MC, Gérard H, Chabot F, Faure G, Polu JM, Lesur O (1993) Early effects of short-time cigarette smoking on the human lung: a study of bronchoalveolar lavage fluids. Lung 171:277–291PubMedCrossRefGoogle Scholar
  39. 39.
    Yamaguchi E, Itoh A, Furuya K, Miyamoto H, Abe S, Kawakami Y (1993) Release of tumor necrosis factor-alpha from human alveolar macrophages is decreased in smokers. Chest 103:479–483PubMedCrossRefGoogle Scholar
  40. 40.
    Ohta T, Yamashita N, Maruyama M, Sugiyama E, Kobayashi M (1998) Cigarette smoking decreases interleukin-8 secretion by human alveolar macrophages. Respir Med 92:922–927PubMedCrossRefGoogle Scholar
  41. 41.
    Hodge S, Hodge G, Ahern J, Jersmann H, Holmes M, Reynolds PN (2007) Smoking alters alveolar macrophage recognition and phagocytic ability: implications in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 37:748–755PubMedCrossRefGoogle Scholar
  42. 42.
    Grumelli S, Corry DB, Song LZ, Song L, Green L, Huh J, Hacken J, Espada R, Bag R, Lewis DE, Kheradmand F (2004) An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLoS Med 1:e8PubMedCrossRefGoogle Scholar
  43. 43.
    Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SD (1997) Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277:2002–2004PubMedCrossRefGoogle Scholar
  44. 44.
    Droemann D, Goldmann T, Tiedje T, Zabel P, Dalhoff K, Schaaf B (2005) Toll-like receptor 2 expression is decreased on alveolar macrophages in cigarette smokers and COPD patients. Respir Res 6:68PubMedCrossRefGoogle Scholar
  45. 45.
    Heguy A, O’Connor TP, Luettich K, Worgall S, Cieciuch A, Harvey BG, Hackett NR, Crystal RG (2006) Gene expression profiling of human alveolar macrophages of phenotypically normal smokers and nonsmokers reveals a previously unrecognized subset of genes modulated by cigarette smoking. J Mol Med 84:318–328PubMedCrossRefGoogle Scholar
  46. 46.
    Woodruff PG, Koth LL, Yang YH, Rodriguez MW, Favoreto S, Dolganov GM, Paquet AC, Erle DJ (2005) A distinctive alveolar macrophage activation state induced by cigarette smoking. Am J Respir Crit Care Med 172:1383–1392PubMedCrossRefGoogle Scholar
  47. 47.
    Finkelstein R, Fraser RS, Ghezzo H, Cosio MG (1995) Alveolar inflammation and its relation to emphysema in smokers. Am J Respir Crit Care Med 152:1666–1672PubMedGoogle Scholar
  48. 48.
    Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, Cherniack RM, Rogers RM, Sciurba FC, Coxson HO, Paré PD (2004) The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 350:2645–2653PubMedCrossRefGoogle Scholar
  49. 49.
    Van Hove CL, Moerloose K, Maes T, Joos GF, Tournoy KG (2008) Cigarette smoke enhances Th-2 driven airway inflammation and delays inhalational tolerance. Respir Res 9:42PubMedCrossRefGoogle Scholar
  50. 50.
    Kroening PR, Barnes TW, Pease L, Limper A, Kita H, Vassallo R (2008) Cigarette smoke-induced oxidative stress suppresses generation of dendritic cell IL-12 and IL-23 through ERK-dependent pathways. J Immunol 181:1536–1547PubMedGoogle Scholar
  51. 51.
    Wang RD, Wright JL, Churg A (2005) Transforming growth factor-beta1 drives airway remodeling in cigarette smoke-exposed tracheal explants. Am J Respir Cell Mol Biol 33:387–393PubMedCrossRefGoogle Scholar
  52. 52.
    Kalra R, Singh SP, Savage SM, Finch GL, Sopori ML (2000) Effects of cigarette smoke on immune response: chronic exposure to cigarette smoke impairs antigen-mediated signaling in T cells and depletes IP3-sensitive Ca(2+) stores. J Pharmacol Exp Ther 293:166–171PubMedGoogle Scholar
  53. 53.
    Hodge S, Hodge G, Holmes M, Reynolds PN (2005) Increased airway epithelial and T-cell apoptosis in COPD remains despite smoking cessation. Eur Respir J 25:447–454PubMedCrossRefGoogle Scholar
  54. 54.
    Domagała-Kulawik J, Hoser G, Dabrowska M, Chazan R (2007) Increased proportion of Fas positive CD8+ cells in peripheral blood of patients with COPD. Respir Med 101:1338–1343PubMedCrossRefGoogle Scholar
  55. 55.
    Gross P, Pfitzer E, Tolker E, Babyak M, Kaschak M (1965) Experimental emphysema: its production with papain in normal and silicotic rats. Arch Environ Health 11:50–58PubMedGoogle Scholar
  56. 56.
    D’Armiento J, Dalal SS, Okada Y, Berg RA, Chada K (1992) Collagenase expression in the lungs of transgenic mice causes pulmonary emphysema. Cell 71:955–961PubMedCrossRefGoogle Scholar
  57. 57.
    Zheng T, Zhu Z, Wang Z, Homer RJ, Ma B, Riese RJ Jr, Chapman HA Jr, Shapiro SD, Elias JA (2000) Inducible targeting of IL-13 to adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J Clin Invest 106:1081–1093PubMedCrossRefGoogle Scholar
  58. 58.
    Wang Z, Zheng T, Zhu Z, Homer RJ, Riese RJ, Chapman HA Jr, Shapiro SD, Elias JA (2000) Interferon gamma induction of pulmonary emphysema in the adult murine lung. J Exp Med 192:1587–1600PubMedCrossRefGoogle Scholar
  59. 59.
    Morris DG, Huang X, Kaminski N, Wang Y, Shapiro SD, Dolganov G, Glick A, Sheppard D (2003) Loss of integrin alpha(v)beta(6)-mediated TGF-beta activation causes MMP12-dependent emphysema. Nature 422:169–173PubMedCrossRefGoogle Scholar
  60. 60.
    Moghaddam SJ, Clement CG, De la Garza MM, Zou X, Travis EL, Young HW, Evans CM, Tuvim MJ, Dickey BF (2008) Haemophilus influenzae lysate induces aspects of the chronic obstructive pulmonary disease phenotype. Am J Respir Cell Mol Biol 38:629–638PubMedCrossRefGoogle Scholar
  61. 61.
    Murphy TF, Sethi S, Neiderman MS (2000) The role of bacteria in exacerbations of COPD. Chest 118:204–209PubMedCrossRefGoogle Scholar
  62. 62.
    Seemungal T, Harper-Owen R, Bhowmik A, Moric I, Sanderson G, Message S, MacCallum P, Meade TW, Jeffries DJ, Johnston SL, Wedzicha JA (2001) Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med 164:1618–1623PubMedGoogle Scholar
  63. 63.
    Centers for Disease Control (2004) Updated interim influenza vaccination recommendations: 2004–05 influenza season. Accessed 31 Dec 2004
  64. 64.
    Advisory Committee of Immunization Practices (2005) Prevention and control of influenza: recommendations of the advisory committee of immunization practices. MMWR 54:1–40Google Scholar
  65. 65.
    Razani-Boroujerdi S, Singh SP, Knall C, Hahn FF, Peña-Philippides JC, Kalra R, Langley RJ, Sopori ML (2004) Chronic nicotine inhibits inflammation and promotes influenza infection. Cell Immunol 230:1–9PubMedCrossRefGoogle Scholar
  66. 66.
    Matsunaga K, Klein TW, Friedman H, Yamamoto Y (2001) Involvement of nicotinic acetylcholine receptors in suppression of antimicrobial activity and cytokine responses of alveolar macrophages to Legionella pneumophila infection by nicotine. J Immunol 167:6518–6524PubMedGoogle Scholar
  67. 67.
    Goulding J, Snelgrove R, Saldana J, Didierlaurent A, Cavanagh M, Gwyer E, Wales J, Wissinger EL, Hussell T (2007) Respiratory infections: do we ever recover? Proc Am Thorac Soc 4:618–625PubMedCrossRefGoogle Scholar
  68. 68.
    Alonso JM, Guiyoule A, Zarantonelli ML, Ramisse F, Pires R, Antignac A, Deghmane AE, Huerre M, Taha MK (2003) A model of meningococcal bacteremia after respiratory superinfection in influenza A virus-infected mice. FEMS Microbiol Lett 222:99–106PubMedCrossRefGoogle Scholar
  69. 69.
    Hakansson A, Kidd A, Wadell G, Sabharwal H, Svanborg C (1994) Adenovirus infection enhances in vitro adherence of Streptococcus pneumoniae. Infect Immun 62:2707–2714PubMedGoogle Scholar
  70. 70.
    Ratner AJ, Lysenko ES, Paul MN, Weiser JN (2005) Synergistic pro-inflammatory responses induced by polymicrobial colonization of epithelial surfaces. Proc Natl Acad Sci 102:3429–3434PubMedCrossRefGoogle Scholar
  71. 71.
    Okamoto S, Kawabata S, Nakagawa I, Okuno Y, Goto T, Sano K, Hamada S (2003) Influenza A virus-infected hosts boost an invasive type of Streptococcus pyogenes infection in mice. J Virol 77:4104–4112PubMedCrossRefGoogle Scholar
  72. 72.
    Sun K, Metzger DW (2008) Inhibition of pulmonary antibacterial defense by interferon-gamma during recovery from influenza infection. Nat Med 14:558–564PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Businees Media, LLC 2011

Authors and Affiliations

  • Amit A. Lugade
  • Paul N. Bogner
  • Yasmin Thanavala
    • 1
  1. 1.Departments of ImmunologyRoswell Park Cancer InstituteBuffaloUSA

Personalised recommendations