Large-Scale Brain Plasticity Following Blindness and the Use of Sensory Substitution Devices

  • Andreja Bubic
  • Ella Striem-Amit
  • Amir AmediEmail author


Neuroplasticity, or the brain’s ability to modify its structure and function at all levels, is variable over the course of life. Although it is most pronounced during early development, there is a growing consensus that a remarkable degree of flexibility is retained even during adulthood. In this chapter we explore the topic of brain plasticity, with special emphasis on large-scale plasticity following sensory loss and the potential for later rehabilitation. We concentrate on vision and blindness because visual functions, which are so important to humans, are subserved by vast parts of the cerebral cortex which become substantially reorganized to compensate for the lack of vision. This compensation manifests itself in different types of neuroplastic changes reflected in the altered cognitive functions and abilities observed in the blind. Understanding and controlling the mechanisms underlying these changes can have major clinical implications, as these may strongly influence the outcomes and success rates of visual rehabilitation. Currently the best hopes for regaining functional vision are provided by rehabilitation methods employing sensory substitution devices (SSDs) which supply visual information to the blind through other (auditory or tactile) modalities, and more invasive sensory restoration techniques which attempt to convey visual information directly to the visual pathways. These techniques can be exploited fully only through a solid understanding of the effects, maximal potential, and limits of brain plasticity. By attempting to send visual information to a “visual” cortex that has already been reorganized following the onset of blindness and teaching this area how to “see,” these methods rely on our ability to understand, channel, and control the mechanisms which enabled the brain to make its original adaptation to lost sensory input.


Transcranial Magnetic Stimulation Visual Cortex Occipital Cortex Sensory Loss Multisensory Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abraham WC, Bear MF (1996) Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci 19(4):126–130PubMedCrossRefGoogle Scholar
  2. Aitken S, Bower TG (1982) Intersensory substitution in the blind. J Exp Child Psychol 33(2):309–323PubMedCrossRefGoogle Scholar
  3. Aitken S, Bower TG (1983) Developmental aspects of sensory substitution. Int J Neurosci 19(1–4):13–19PubMedCrossRefGoogle Scholar
  4. Amedi A, Camprodon J, Merabet L, Bermpohl F, Haligan E, Bass-Pitskel N et al (2006) Highly transient activation of primary visual cortex (V1) for tactile object recognition in sighted following 5 days of blindfolding. Paper presented at 7th annual meeting of the international multisensory research forum, Universtify of DublinGoogle Scholar
  5. Amedi A, Floel A, Knecht S, Zohary E, Cohen LG (2004) Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects. Nat Neurosci 7(11):1266–1270PubMedCrossRefGoogle Scholar
  6. Amedi A, Jacobson G, Hendler T, Malach R, Zohary E (2002) Convergence of visual and tactile shape processing in the human lateral occipital complex. Cereb Cortex 12(11):1202–1212PubMedCrossRefGoogle Scholar
  7. Amedi A, Malach R, Hendler T, Peled S, Zohary E (2001) Visuo-haptic object-related activation in the ventral visual pathway. Nat Neurosci 4(3):324–330PubMedCrossRefGoogle Scholar
  8. Amedi A, Merabet LB, Bermpohl F, Pascual-Leone A (2005) The occipital cortex in the blind. Lessons about plasticity and vision. Curr Dir Psychol Sci 14(6):306–311CrossRefGoogle Scholar
  9. Amedi A, Raz N, Pianka P, Malach R, Zohary E (2003) Early ‘visual’ cortex activation correlates with superior verbal memory performance in the blind. Nat Neurosci 6(7):758–766PubMedCrossRefGoogle Scholar
  10. Amedi A, Stern WM, Camprodon JA, Bermpohl F, Merabet L, Rotman S et al (2007) Shape conveyed by visual-to-auditory sensory substitution activates the lateral occipital complex. Nat Neurosci 10(6):687–689PubMedCrossRefGoogle Scholar
  11. Arno P, Capelle C, Wanet-Defalque MC, Catalan-Ahumada M, Veraart C (1999) Auditory coding of visual patterns for the blind. Perception 28(8):1013–1029PubMedCrossRefGoogle Scholar
  12. Arno P, De Volder AG, Vanlierde A, Wanet-Defalque MC, Streel E, Robert A et al (2001) Occipital activation by pattern recognition in the early blind using auditory substitution for vision. Neuroimage 13(4):632–645PubMedCrossRefGoogle Scholar
  13. Auvray M, Hanneton S, O’Regan JK (2007) Learning to perceive with a visuo-auditory substitution system: localisation and object recognition with ‘The vOICe’. Perception 36:416–430PubMedCrossRefGoogle Scholar
  14. Bach-y-Rita P (2004) Tactile sensory substitution studies. Ann N Y Acad Sci 1013:83–91PubMedCrossRefGoogle Scholar
  15. Bach-Y-Rita P, Collins CC, Saunders FA, White B, Scadden L (1969) vision substitution by tactile image projection. Nature 221(5184):963–964PubMedCrossRefGoogle Scholar
  16. Bach-y-Rita P, Kaczmarek KA, Tyler ME, Garcia-Lara J (1998) Form perception with a 49-point electrotactile stimulus array on the tongue: a technical note. J Rehabil Res Dev 35(4):427–430PubMedGoogle Scholar
  17. Bach-y-Rita P, Kercel SW (2003) Sensory substitution and the human-machine interface. Trends Cogn Sci 7(12):541–546PubMedCrossRefGoogle Scholar
  18. Bavelier D, Dye MW, Hauser PC (2006) Do deaf individuals see better? Trends Cogn Sci 10(11):512–518PubMedCrossRefGoogle Scholar
  19. Bavelier D, Neville HJ (2002) Cross-modal plasticity: where and how? Nat Rev Neurosci 3(6):443–452PubMedGoogle Scholar
  20. Brelen ME, Duret F, Gerard B, Delbeke J, Veraart C (2005) Creating a meaningful visual perception in blind volunteers by optic nerve stimulation. J Neural Eng 2(1):S22–S28PubMedCrossRefGoogle Scholar
  21. Brown JA (2006) Recovery of motor function after stroke. Prog Brain Res 157:223–228PubMedCrossRefGoogle Scholar
  22. Büchel C (2003) Cortical hierarchy turned on its head. Nat Neurosci 6(7):657–658PubMedCrossRefGoogle Scholar
  23. Büchel C, Price C, Frackowiak RS, Friston K (1998) Different activation patterns in the visual cortex of late and congenitally blind subjects. Brain 121(Pt 3):409–419PubMedCrossRefGoogle Scholar
  24. Buonomano DV, Johnson HA (2009) Cortical plasticity and learning: mechanisms and models. In: Squire LR (ed ) Encyclopedia of neuroscience. Academic Press, LondonGoogle Scholar
  25. Burton H (2003) Visual cortex activity in early and late blind people. J Neurosci 23(10):4005–4011PubMedGoogle Scholar
  26. Burton H, Diamond JB, McDermott KB (2003) Dissociating cortical regions activated by semantic and phonological tasks: a FMRI study in blind and sighted people. J Neurophysiol 90(3):1965–1982. Epub 2003 Jun 1964PubMedCrossRefGoogle Scholar
  27. Burton H, Snyder AZ, Conturo TE, Akbudak E, Ollinger JM, Raichle ME (2002) Adaptive changes in early and late blind: a fMRI study of Braille reading. J Neurophysiol 87(1):589–607PubMedGoogle Scholar
  28. Burton H, Snyder AZ, Diamond JB, Raichle ME (2002) Adaptive changes in early and late blind: a FMRI study of verb generation to heard nouns. J Neurophysiol 88(6):3359–3371PubMedCrossRefGoogle Scholar
  29. Campbell R, MacSweeney M (2004) Neuroimaging studies of cross-modal plasticity and language processing in deaf people. In: Calvert G, Spence C, Stein BE (eds) The handbook of multisensory processes). MIT Press, Cambridge, MA, pp. 773–785Google Scholar
  30. Capelle C, Trullemans C, Arno P, Veraart C (1998) A real-time experimental prototype for enhancement of vision rehabilitation using auditory substitution. IEEE Trans Biomed Eng 45(10):1279–1293PubMedCrossRefGoogle Scholar
  31. Chabot N, Robert S, Tremblay R, Miceli D, Boire D, Bronchti G (2007) Audition differently activates the visual system in neonatally enucleated mice compared with anophthalmic mutants. Eur J Neurosci 26(8):2334–2348PubMedCrossRefGoogle Scholar
  32. Champoux F, Lepore F, Gagne JP, Theoret H (2009) Visual stimuli can impair auditory processing in cochlear implant users. Neuropsychologia 47(1):17–22PubMedCrossRefGoogle Scholar
  33. Chebat DR, Rainville C, Kupers R, Ptito M (2007) Tactile-‘visual’ acuity of the tongue in early blind individuals. Neuroreport 18(18):1901–1904PubMedCrossRefGoogle Scholar
  34. Chechik G, Meilijson I, Ruppin E (1998) Neuronal regulation: a mechanism for efficient synaptic pruning during brain maturation. Neuroscience Letters, S9-S9Google Scholar
  35. Chen R, Cohen LG, Hallett M (2002) Nervous system reorganization following injury. Neuroscience 111(4):761–773PubMedCrossRefGoogle Scholar
  36. Chen SC, Hallum LE, Suaning GJ, Lovell NH (2007) A quantitative analysis of head movement behaviour during visual acuity assessment under prosthetic vision simulation. J Neural Eng 4(1):S108PubMedCrossRefGoogle Scholar
  37. Cohen LG, Celnik P, Pascual-Leone A, Corwell B, Falz L, Dambrosia J et al (1997) Functional relevance of cross-modal plasticity in blind humans. Nature 389(6647):180–183PubMedCrossRefGoogle Scholar
  38. Cohen LG, Weeks RA, Sadato N, Celnik P, Ishii K, Hallett M (1999) Period of susceptibility for cross-modal plasticity in the blind. Ann Neurol 45(4):451–460PubMedCrossRefGoogle Scholar
  39. Collignon, O, Lassonde M, Lepore F, Bastien D, Veraart C (2007) Functional cerebral reorganization for auditory spatial processing and auditory substitution of vision in early blind subjects. Cereb Cortex 17(2):457–465Google Scholar
  40. Collignon O, Renier L, Bruyer R, Tranduy D, Veraart C (2006) Improved selective and divided spatial attention in early blind subjects. Brain Res 1075(1):175–182PubMedCrossRefGoogle Scholar
  41. Collignon O, Voss P, Lassonde M, Lepore F (2009) Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects. Exp Brain Res 192(3):343–358Google Scholar
  42. Cronly-Dillon J, Persaud K, Gregory RP (1999) The perception of visual images encoded in musical form: a study in cross-modality information transfer. Proc Biol Sci 266(1436):2427–2433PubMedCrossRefGoogle Scholar
  43. Cronly-Dillon J, Persaud KC, Blore R (2000) Blind subjects construct conscious mental images of visual scenes encoded in musical form. Proc Biol Sci 267(1458):2231–2238PubMedCrossRefGoogle Scholar
  44. D’Angiulli A, Waraich P (2002) Enhanced tactile encoding and memory recognition in congenital blindness. Int J Rehabil Res 25(2):143–145PubMedCrossRefGoogle Scholar
  45. Dagnelie G (2008) Psychophysical evaluation for visual prosthesis. Annu Rev Biomed Eng 10:339–368PubMedCrossRefGoogle Scholar
  46. De Volder AG, Bol A, Blin J, Robert A, Arno P, Grandin C et al (1997) Brain energy metabolism in early blind subjects: neural activity in the visual cortex. Brain Res 750(1–2):235–244PubMedCrossRefGoogle Scholar
  47. Dinse HR, Merzenich MM (2000) Adaptation of inputs in the somatosensory system. In: Fahle M, Poggio T (eds) Perceptual learning. MIT Press, Cambridge, MA, pp 19–42Google Scholar
  48. Dobelle WH (2000) Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J 46(1):3–9PubMedCrossRefGoogle Scholar
  49. Doucet ME, Guillemot JP, Lassonde M, Gagne JP, Leclerc C, Lepore F (2005) Blind subjects process auditory spectral cues more efficiently than sighted individuals. Exp Brain Res 160(2):194–202PubMedCrossRefGoogle Scholar
  50. Dowling, J (2008) Current and future prospects for optoelectronic retinal prostheses. Nature-Eye 23:1999–2005Google Scholar
  51. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4(11):1313–1317PubMedCrossRefGoogle Scholar
  52. Falchier A, Clavagnier S, Barone P, Kennedy H (2002) Anatomical evidence of multimodal integration in primate striate cortex. J Neurosci 22(13):5749–5759PubMedGoogle Scholar
  53. Fernandez E, Ahnelt P, Rabischong P, Botella C, & Garcia-de Quiros F (2002) Towards a cortical visual neuroprosthesis for the blind. IFMBE Proc 3(2):1690–1691Google Scholar
  54. Fieger A, Röder B, Teder-Salejarvi W, Hillyard SA, Neville HJ (2006) Auditory spatial tuning in late-onset blindness in humans. J Cogn Neurosci 18(2):149–157PubMedCrossRefGoogle Scholar
  55. Fine, I (2008) The behavioral and neurophysiological effects of sensory deprivation. In: Rieser JJ, Ashmead DH, Ebner FF, Corn AL (eds) Blindness and brain plasticity in navigation and object perception. Taylor & Francis, New York, pp. 127–155Google Scholar
  56. Fine I, Wade AR, Brewer AA, May MG, Goodman DF, Boynton GM et al (2003) Long-term deprivation affects visual perception and cortex. Nat Neurosci 6(9):915–916PubMedCrossRefGoogle Scholar
  57. Finney EM, Fine I, Dobkins KR (2001) Visual stimuli activate auditory cortex in the deaf. Nat Neurosci 4(12):1171–1173PubMedCrossRefGoogle Scholar
  58. Gizewski ER, Gasser T, de Greiff A, Boehm A, Forsting M (2003) Cross-modal plasticity for sensory and motor activation patterns in blind subjects. Neuroimage 19(3):968–975PubMedCrossRefGoogle Scholar
  59. Golarai G, Ghahremani DG, Whitfield-Gabrieli S, Reiss A, Eberhardt JL, Gabrieli JD et al. (2007) Differential development of high-level visual cortex correlates with category-specific recognition memory. Nat Neurosci 10(4):512–522PubMedGoogle Scholar
  60. Goldish LH, Taylor HE (1974) The optacon: a valuable device for blind persons. New Outlook Blind 68(2):49–56Google Scholar
  61. Goldreich D, Kanics IM (2003) Tactile acuity is enhanced in blindness. J Neurosci 23(8):3439–3445PubMedGoogle Scholar
  62. Goldreich D, Kanics IM (2006) Performance of blind and sighted humans on a tactile grating detection task. Percept Psychophys 68(8):1363–1371PubMedCrossRefGoogle Scholar
  63. Gougoux F, Zatorre RJ, Lassonde M, Voss P, Lepore F (2005) A functional neuroimaging study of sound localization: visual cortex activity predicts performance in early-blind individuals. PLoS Biol 3(2):e27PubMedCrossRefGoogle Scholar
  64. Grafman J (2000) Conceptualizing functional neuroplasticity. J Commun Disord 33(4):345–355; quiz 355–346PubMedCrossRefGoogle Scholar
  65. Grant AC, Thiagarajah MC, Sathian K (2000) Tactile perception in blind Braille readers: a psychophysical study of acuity and hyper acuity using gratings and dot patterns. Percept Psychophys 62(2):301–312PubMedCrossRefGoogle Scholar
  66. Gregory RL, Wallace JG (1963) Recovery from early blindness: a case study. Reproduced in 2001 from Exp Psychol Soc Mon. 2. Heffers, CambridgeGoogle Scholar
  67. Haddock JN, Berlin L (1950) Transsynaptic degeneration in the visual system; report of a case. Arch Neurol Psychiat 64(1):66–73PubMedCrossRefGoogle Scholar
  68. Harrison RV, Gordon KA, Mount RJ (2005) Is there a critical period for cochlear implantation in congenitally deaf children? Analyses of hearing and speech perception performance after implantation. Dev Psychobiol 46(3):252–261PubMedCrossRefGoogle Scholar
  69. Heyes AD (1984) The sonic pathfinder: a new electronic travel aid. J Vis Impair Blindness 78(5):200–202Google Scholar
  70. Hugdahl K, Ek M, Takio F, Rintee T, Tuomainen J, Haarala C et al. (2004) Blind individuals show enhanced perceptual and attentional sensitivity for identification of speech sounds. Brain Res Cogn Brain Res 19(1):28–32PubMedCrossRefGoogle Scholar
  71. Hull T, Mason H (1995) Performance of blind-children on digit-span tests. J Vis Impair Blindness 89(2):166–169Google Scholar
  72. Izraeli R, Koay G, Lamish M, Heicklen-Klein AJ, Heffner HE, Heffner RS et al. (2002) Cross-modal neuroplasticity in neonatally enucleated hamsters: structure, electrophysiology and behaviour. Eur J Neurosci 15(4):693–712PubMedCrossRefGoogle Scholar
  73. Kaas JH (1991) Plasticity of sensory and motor maps in adult mammals. Annu Rev Neurosci 14 137–167PubMedCrossRefGoogle Scholar
  74. Kaas JH (2000) The reorganization of somatosensory and motor cortex after peripheral nerve or spinal cord injury in primates. Prog Brain Res 128:173–179PubMedCrossRefGoogle Scholar
  75. Karlen SJ, Kahn DM, Krubitzer L (2006) Early blindness results in abnormal corticocortical and thalamocortical connections. Neuroscience 142(3):843–858PubMedCrossRefGoogle Scholar
  76. Kay L, Kay N (1983) An ultrasonic spatial sensor’s role as a developmental aid for blind children. Trans Ophthalmol Soc N Z 35:38–42PubMedGoogle Scholar
  77. Kleiner A, Kurzweil RC (1977) A description of the Kurzweil reading machine and a status report on its testing and dissemination. Bull Prosthet Res 10(27):72–81PubMedGoogle Scholar
  78. Knudsen EI (2004) Sensitive periods in the development of the brain and behavior. J Cogn Neurosci 16(8):1412–1425PubMedCrossRefGoogle Scholar
  79. Kolb B (1995) Brain plasticity and behavior. Lawrence Erlbaum Associates, Inc., Mahwah, NJGoogle Scholar
  80. Korte M, Rauschecker JP (1993) Auditory spatial tuning of cortical neurons is sharpened in cats with early blindness. J Neurophysiol 70(4):1717–1721PubMedGoogle Scholar
  81. Kujala T, Alho K, Paavilainen P, Summala H, Naatanen R (1992) Neural plasticity in processing of sound location by the early blind: an event-related potential study. Electroencephalogr Clin Neurophysiol 84(5):469–472PubMedCrossRefGoogle Scholar
  82. Kujala T, Palva MJ, Salonen O, Alku P, Huotilainen M, Jarvinen A et al. (2005) The role of blind humans’ visual cortex in auditory change detection. Neurosci Lett 379(2):127–131PubMedCrossRefGoogle Scholar
  83. Kupers R, Fumal A, de Noordhout AM, Gjedde A, Schoenen J, Ptito M (2006) Transcranial magnetic stimulation of the visual cortex induces somatotopically organized qualia in blind subjects. Proc Natl Acad Sci U S A 103(35):13256–13260PubMedCrossRefGoogle Scholar
  84. Lacey S, Tal N, Amedi A, Sathian K (2009) A putative model of multisensory object representation. Brain Topogr 21(3–4):269–274PubMedCrossRefGoogle Scholar
  85. Laemle LK, Strominger NL, Carpenter DO (2006) Cross-modal innervation of primary visual cortex by auditory fibers in congenitally anophthalmic mice. Neurosci Lett 396(2):108–112PubMedCrossRefGoogle Scholar
  86. Leclerc C, Saint-Amour D, Lavoie ME, Lassonde M, Lepore F (2000) Brain functional reorganization in early blind humans revealed by auditory event-related potentials. Neuroreport 11(3):545–550PubMedCrossRefGoogle Scholar
  87. Lee DS, Lee JS, Oh SH, Kim SK, Kim JW, Chung JK et al. (2001) Cross-modal plasticity and cochlear implants. Nature 409(6817):149–150PubMedCrossRefGoogle Scholar
  88. Lessard N, Pare M, Lepore F, Lassonde M (1998) Early-blind human subjects localize sound sources better than sighted subjects. Nature 395(6699):278–280PubMedCrossRefGoogle Scholar
  89. Lewald J (2002) Vertical sound localization in blind humans. Neuropsychologia 40(12):1868–1872PubMedCrossRefGoogle Scholar
  90. Lickliter R, Bahrick LE (2004) Perceptual development and the origins of multisensory responsiveness. In: Calvert G, Spence C, Stein BE (eds) The handbook of multisensory processes. MIT Press, Cambridge, MA, pp 643–654Google Scholar
  91. Liu Y, Yu C, Liang M, Li J, Tian L, Zhou Y et al. (2007) Whole brain functional connectivity in the early blind. Brain 130(Pt 8):2085–2096Google Scholar
  92. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44(1):5–21PubMedCrossRefGoogle Scholar
  93. Meijer PB (1992) An experimental system for auditory image representations. IEEE Trans Biomed Eng 39(2):112–121PubMedCrossRefGoogle Scholar
  94. Merabet L, Thut G, Murray B, Andrews J, Hsiao S, Pascual-Leone A (2004) Feeling by sight or seeing by touch? Neuron 42(1):173–179PubMedCrossRefGoogle Scholar
  95. Merabet LB, Battelli L, Obretenova S, Maguire S, Meijer P, Pascual-Leone A (2009) Functional recruitment of visual cortex for sound encoded object identification in the blind. Neuroreport 20(2):132–138Google Scholar
  96. Merabet LB, Hamilton R, Schlaug G, Swisher JD, Kiriakopoulos ET, Pitskel NB et al. (2008) Rapid and reversible recruitment of early visual cortex for touch. PLoS ONE 3(8):e3046PubMedCrossRefGoogle Scholar
  97. Merabet LB, Maguire D, Warde A, Alterescu K, Stickgold R, Pascual-Leone A (2004) Visual hallucinations during prolonged blindfolding in sighted subjects. J Neuroophthalmol 24(2):109–113PubMedCrossRefGoogle Scholar
  98. Merabet LB, Pitskel NB, Amedi A, Pascual-Leone A (2008) The plastic human brain in blind individuals: the cause of disability and the opportunity for rehabilitation. In: Rieser JJ, Ashmead DH, Ebner FF, Corn AL (eds) Blindness and brain plasticity in navigation and object perception. Taylor & Francis, New York, pp 23–42Google Scholar
  99. Merabet LB, Rizzo JF, Amedi A, Somers DC, Pascual-Leone A (2005) What blindness can tell us about seeing again: merging neuroplasticity and neuroprostheses. Nat Rev Neurosci 6(1):71–77PubMedCrossRefGoogle Scholar
  100. Michel GF, Tyler AN (2005) Critical period: a history of the transition from questions of when, to what, to how. Dev Psychobiol 46(3):156–162PubMedCrossRefGoogle Scholar
  101. Millar S (1981) Cross-modal and intersensory perception and the blind. In: Walk RD, Pick HLJ (eds) Intersensory perception and sensory integration. Plenum Press, New York, pp 281–314CrossRefGoogle Scholar
  102. Muckli L, Naumer MJ, Singer W (2009) Bilateral visual field maps in a patient with only one hemisphere. Proc Natl Acad Sci U S A 106(31):13034–13039PubMedCrossRefGoogle Scholar
  103. Murphy C, Cain WS (1986) Odor identification: the blind are better. Physiol Behav 37(1):177–180PubMedCrossRefGoogle Scholar
  104. Neville HJ, Bavelier D (2000) Specificity of developmental neuroplasticity in humans: evidence from sensory deprivation and altered language experience. In Shaw CA, McEachern JC (eds) Toward a theory of neuroplasticity. New York: Taylor & Francis, pp. 261–275Google Scholar
  105. Newman NM, Stevens RA, Heckenlively JR (1987) Nerve fibre layer loss in diseases of the outer retinal layer. Br J Ophthalmol 71(1):21–26PubMedCrossRefGoogle Scholar
  106. Niemeyer W, Starlinger I (1981) Do the blind hear better? Investigations on auditory processing in congenital or early acquired blindness. II. Central functions. Audiology 20(6):510–515PubMedCrossRefGoogle Scholar
  107. Noppeney U, Friston KJ, Ashburner J, Frackowiak R, Price CJ (2005) Early visual deprivation induces structural plasticity in gray and white matter. Curr Biol 15(13):R488–R490PubMedCrossRefGoogle Scholar
  108. Ofan RH, Zohary E (2007) Visual Cortex Activation in Bilingual Blind Individuals during Use of Native and Second Language. Cereb Cortex 17(6):1249–1259Google Scholar
  109. Ostrovsky Y, Andalman A, Sinha P (2006) Vision following extended congenital blindness. Psychol Sci 17(12):1009–1014PubMedCrossRefGoogle Scholar
  110. Palanker D, Vankov A, Huie P, Baccus S (2005) Design of a high-resolution optoelectronic retinal prosthesis. J Neural Eng 2(1):S105–S120PubMedCrossRefGoogle Scholar
  111. Pan WJ, Wu G, Li CX, Lin F, Sun J, Lei H (2007) Progressive atrophy in the optic pathway and visual cortex of early blind Chinese adults: a voxel-based morphometry magnetic resonance imaging study. Neuroimage 37(1):212–220PubMedCrossRefGoogle Scholar
  112. Pascual-Leone A, Amedi A, Fregni F, Merabet LB (2005) The plastic human brain cortex. Annu Rev Neurosci 28:377–401PubMedCrossRefGoogle Scholar
  113. Pascual-Leone A, Hamilton R (2001) The metamodal organization of the brain. Prog Brain Res 134:427–445PubMedCrossRefGoogle Scholar
  114. Penfield W, Rasmussen T (1950) The cerebral cortex of man: a clinical study of localization of function. Macmillan, New YorkGoogle Scholar
  115. Pezaris JS, Reid RC (2005) Microstimulation in LGN produces focal visual percepts: proof of concept for a visual prosthesis. J Vis 5(8):367CrossRefGoogle Scholar
  116. Pezaris JS, Reid RC (2009) Simulations of electrode placement for a thalamic visual prosthesis. IEEE Trans Biomed Eng 56(1):172–178PubMedCrossRefGoogle Scholar
  117. Piche M, Chabot N, Bronchti G, Miceli D, Lepore F, Guillemot JP (2007) Auditory responses in the visual cortex of neonatally enucleated rats. Neuroscience 145(3):1144–1156PubMedCrossRefGoogle Scholar
  118. Pitskel NB, Merabet LB, Ramos-Estebanez C, Kauffman T, Pascual-Leone A (2007) Time-dependent changes in cortical excitability after prolonged visual deprivation. Neuroreport 18(16):1703–1707PubMedCrossRefGoogle Scholar
  119. Plaza P, Cuevas I, Collignon O, Grandin C, De Volder AG, Renier L (2009) Perceiving faces using auditory substitution of vision activates the fusiform face area. Paper presented at the Belgian Society for Fundamental and Clinical Physiology and Pharmacology, Spring Meeting, 2009Google Scholar
  120. Poirier C, De Volder A, Tranduy D, Scheiber C (2007) Pattern recognition using a device substituting audition for vision in blindfolded sighted subjects. Neuropsychologia 45(5):1108–1121PubMedCrossRefGoogle Scholar
  121. Poirier C, De Volder AG, Scheiber C (2007) What neuroimaging tells us about sensory substitution. Neurosci Biobehav Rev 31(7):1064–1070PubMedCrossRefGoogle Scholar
  122. Poirier C, Richard MA, Duy DT, Veraart C (2006) Assessment of sensory substitution prosthesis potentialities in minimalist conditions of learning. Appl Cogn Psychol 20(4):447–460CrossRefGoogle Scholar
  123. Poirier CC, Collignon O, Scheiber C, Renier L, Vanlierde A, Tranduy D et al. (2006) Auditory motion perception activates visual motion areas in early blind subjects. Neuroimage 31(1):279–285PubMedCrossRefGoogle Scholar
  124. Poirier CC, De Volder AG, Tranduy D, Scheiber C (2006) Neural changes in the ventral and dorsal visual streams during pattern recognition learning. Neurobiol Learn Mem 85(1):36–43PubMedCrossRefGoogle Scholar
  125. Pozar L (1982) Effect of long-term sensory deprivation on recall of verbal material. Studia Psychologica 24(3–4):311Google Scholar
  126. Pring L (1988) The ‘reverse-generation’ effect: a comparison of memory performance between blind and sighted children. Br J Psychol 79 (Pt 3):387–400PubMedCrossRefGoogle Scholar
  127. Proulx MJ, Stoerig P, Ludowig E, Knoll I (2008) Seeing ‘where’ through the ears: effects of learning-by-doing and long-term sensory deprivation on localization based on image-to-sound substitution. PLoS ONE 3(3):e1840PubMedCrossRefGoogle Scholar
  128. Ptito M, Moesgaard SM, Gjedde A, Kupers R (2005) Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blind. Brain 128(Pt 3):606–614PubMedCrossRefGoogle Scholar
  129. Rauschecker JP (2008) Plasticity of cortical maps in visual deprivation. In: Rieser JJ, Ashmead DH, Ebner FF, Corn AL (eds) Blindness and brain plasticity in navigation and object perception. Taylor & Francis, New York, 43–66Google Scholar
  130. Rauschecker JP, Korte M (1993) Auditory compensation for early blindness in cat cerebral cortex. J Neurosci 13(10):4538–4548PubMedGoogle Scholar
  131. Raz N, Amedi A, Zohary E (2005) V1 activation in congenitally blind humans is associated with episodic retrieval. Cereb Cortex 15(9):1459–1468PubMedCrossRefGoogle Scholar
  132. Raz N, Striem E, Pundak G, Orlov T, Zohary E (2007) Superior serial memory in the blind: a case of cognitive compensatory adjustment. Curr Biol 17(13):1129–1133Google Scholar
  133. Recanzone GH, Merzenich MM, Jenkins WM, Grajski KA, Dinse HR (1992) Topographic reorganization of the hand representation in cortical area 3b of owl monkeys trained in a frequency-discrimination task. J Neurophysiol 67(5):1031–1056PubMedGoogle Scholar
  134. Renier L, Collignon O, Poirier C, Tranduy D, Vanlierde A, Bol A et al. (2005) Cross-modal activation of visual cortex during depth perception using auditory substitution of vision. Neuroimage 26(2):573–580PubMedCrossRefGoogle Scholar
  135. Ricciardi E, Vanello N, Sani L, Gentili C, Scilingo EP, Landini L et al. (2007) The effect of visual experience on the development of functional architecture in hMT+. Cereb Cortex 17(12):2933–2939Google Scholar
  136. Rizzo JF 3rd, Snebold L, Keeney M (2007) Development of a visual prosthesis: a review of the field and an overview of the Boston retinal implant project. In: Tombran-Tink J, Barnstable CJ, Rizzo JF 3rd (eds) Visual prosthesis and ophthalmic devices. Humana Press, Totowa, NJ, pp. 71–93Google Scholar
  137. Rockland KS, Ojima H (2003) Multisensory convergence in calcarine visual areas in macaque monkey. Int J Psychophysiol 50(1–2):19–26PubMedCrossRefGoogle Scholar
  138. Röder B, Rösler F (1998) Visual input does not facilitate the scanning of spatial images. J Ment Imag 22(3 and 4):127–144Google Scholar
  139. Röder B, Rösler F, Neville HJ (2000) Event-related potentials during auditory language processing in congenitally blind and sighted people. Neuropsychologia 38(11):1482–1502PubMedCrossRefGoogle Scholar
  140. Röder B, Rösler F, Neville HJ (2001) Auditory memory in congenitally blind adults: a behavioral-electrophysiological investigation. Brain Res Cogn Brain Res 11(2):289–303PubMedCrossRefGoogle Scholar
  141. Röder B, Stock O, Bien S, Neville H, Rösler F (2002) Speech processing activates visual cortex in congenitally blind humans. Eur J Neurosci 16(5):930–936PubMedCrossRefGoogle Scholar
  142. Röder B, Teder-Salejarvi W, Sterr A, Rösler F, Hillyard SA, Neville HJ (1999) Improved auditory spatial tuning in blind humans. Nature 400(6740):162–166PubMedCrossRefGoogle Scholar
  143. Rösler F, Röder B, Heil M, Hennighausen E (1993) Topographic differences of slow event-related brain potentials in blind and sighted adult human subjects during haptic mental rotation. Brain Res Cogn Brain Res 1(3):145–159PubMedCrossRefGoogle Scholar
  144. Sadato N, Pascual-Leone A, Grafman J, Deiber MP, Ibanez V, Hallett M (1998) Neural networks for Braille reading by the blind. Brain 121(Pt 7):1213–1229PubMedCrossRefGoogle Scholar
  145. Sadato N, Pascual-Leone A, Grafman J, Ibanez V, Deiber MP, Dold G et al. (1996) Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380(6574):526–528PubMedCrossRefGoogle Scholar
  146. Sampaio E, Maris S, Bach-y-Rita P (2001) Brain plasticity: ‘visual’ acuity of blind persons via the tongue. Brain Res 908(2):204–207PubMedCrossRefGoogle Scholar
  147. Schlaggar BL, O’Leary DD (1991) Potential of visual cortex to develop an array of functional units unique to somatosensory cortex. Science 252(5012):1556–1560PubMedCrossRefGoogle Scholar
  148. Segond H, Weiss D, Sampaio E (2007) A proposed tactile vision-substitution system for infants who are blind tested on sighted infants. J Vis Impair Blindness 101(1):32–43Google Scholar
  149. Sharma J, Angelucci A, Sur M (2000) Induction of visual orientation modules in auditory cortex. Nature 404(6780):841–847PubMedCrossRefGoogle Scholar
  150. Shaw CA, McEachern JC (2000) Transversing levels of organization: a theory of neuronal stability and plasticity. In: Shaw CA, McEachern JC (eds) Toward a theory of neuroplasticity. Taylor & Francis, New York, pp 427–448Google Scholar
  151. Shimony JS, Burton H, Epstein AA, McLaren DG, Sun SW, Snyder AZ (2006) Diffusion tensor imaging reveals white matter reorganization in early blind humans. Cereb Cortex 16(11):1653–1661PubMedCrossRefGoogle Scholar
  152. Sinha (2003) Face classification following long-term visual deprivation. J Vis 3(9):104CrossRefGoogle Scholar
  153. Smith M, Franz EA, Joy SM, Whitehead K (2005) Superior performance of blind compared with sighted individuals on bimanual estimations of object size. Psychol Sci 16(1):11–14PubMedCrossRefGoogle Scholar
  154. Smits B, Mommers MJ C. (1976) differences between blind and sighted children on wisc verbal subtests. New Outlook Blind 70(6):240–246Google Scholar
  155. Spelman FA (2006) Cochlear electrode arrays: past, present and future. Audiol Neurootol 11(2):77–85PubMedCrossRefGoogle Scholar
  156. Tal N, Amedi A (2009) Multisensory visual-tactile object related network in humans: insights gained using a novel crossmodal adaptation approach. Exp Brain Res 198(2–3):165–182PubMedCrossRefGoogle Scholar
  157. Tillman MH, Bashaw WL (1968) Multivariate analysis of the WISC scales for blind and sighted children. Psychol Rep 23(2):523–526PubMedCrossRefGoogle Scholar
  158. Uhl F, Franzen P, Lindinger G, Lang W, Deecke L (1991) On the functionality of the visually deprived occipital cortex in early blind persons. Neurosci Lett 124(2):256–259PubMedCrossRefGoogle Scholar
  159. Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, M. Goodalec A, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Boston, pp 549–586Google Scholar
  160. Veraart C, Wanet-Defalque MC, Gerard B, Vanlierde A, Delbeke J (2003) Pattern recognition with the optic nerve visual prosthesis. Artif Organs 27(11):996–1004PubMedCrossRefGoogle Scholar
  161. von Melchner L, Pallas SL, Sur M (2000) Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature 404(6780):871–876CrossRefGoogle Scholar
  162. Voss P, Lassonde M, Gougoux F, Fortin M, Guillemot JP, Lepore F (2004) Early- and late-onset blind individuals show supra-normal auditory abilities in far-space. Curr Biol 14(19):1734–1738PubMedCrossRefGoogle Scholar
  163. Wakefield CE, Homewood J, Taylor AJ (2004) Cognitive compensations for blindness in children: an investigation using odour naming. Perception 33(4):429–442PubMedCrossRefGoogle Scholar
  164. Wallace MT (2004) The development of multisensory integration. In: Calvert G, Spence C, Stein BE (eds) The handbook of multisensory processes. MIT Press, Cambridge, MA, pp 625–642Google Scholar
  165. Warren DH (1994) Blindness and children: an individual differences approach. Cambridge University Press, New York, NYGoogle Scholar
  166. Weiland JD, Humayun MS (2008) Visual prosthesis. Proc IEEE 96(7):1076–1084CrossRefGoogle Scholar
  167. Weiland JD, Liu W, Humayun MS (2005) Retinal prosthesis. Annu Rev Biomed Eng 7:361–401PubMedCrossRefGoogle Scholar
  168. WHO (2009) Visual impairment and blindness: World Health Organization, Fact Sheet 282Google Scholar
  169. Wiesel TN, Hubel DH (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26:1003–1017PubMedGoogle Scholar
  170. Wiesel TN, Hubel DH (1965) Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol 28(6):1029–1040PubMedGoogle Scholar
  171. Yu C, Liu Y, Li J, Zhou Y, Wang K, Tian L et al. (2008) Altered functional connectivity of primary visual cortex in early blindness. Hum Brain Mapp 29(5):533–543Google Scholar
  172. Zangaladze A, Epstein CM, Grafton ST, Sathian K (1999) Involvement of visual cortex in tactile discrimination of orientation. Nature 401(6753):587–590PubMedCrossRefGoogle Scholar
  173. Zwiers MP, Van Opstal AJ, Cruysberg JR (2001) A spatial hearing deficit in early-blind humans. J Neurosci 21(9):RC142:141–145Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC)Hebrew University-Hadassah Medical SchoolJerusalemIsrael

Personalised recommendations