Skip to main content

Multisensory Texture Perception

  • Chapter
  • First Online:

Abstract

This chapter describes commonalities and differences in the perception of surface texture by means of touch, vision, and audition. Texture is multidimensional, incorporating roughness, stickiness, hardness, or density, for example. Within the modality of touch, the duplex model proposes that roughness is mediated by different receptor populations, depending on the textural scale. Roughness can also be judged haptically by wielding a probe and sensing vibration. Studies of visual texture perception suggest that roughness is judged from cues signaling the protrusion and spatial distribution of surface elements. Few systematic differences are found between texture judgments based on vision vs. touch, although vision appears to be biased toward encoding geometric pattern descriptions and touch toward intensive cues. When both modalities are available, the relative weights appear to reflect long-term biases and immediate context. Auditory signals for texture, which result from mechanical interactions between an exploring effector and a surface, can modulate judgments of roughness based on touch. Evidence is lacking, however, for integration of auditory and haptic cues to roughness, particularly early in perceptual processing. Measures of brain activation indicate that distinct loci for vision and touch predominate, but some brain regions are responsive to both modalities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adelson EH, Bergen JR (1991) The plenoptic function and the elements of early vision. In: Landy MS, Movshon JA (eds) Computational models of visual processing. MIT Press, Cambridge, MA, pp 3–20

    Google Scholar 

  • Arnott SR, Cant JS, Dutton GN, Goodale MA (2008) Crinkling and crumpling: an auditory fMRI study of material properties. Neuroimage 43:368–378

    Article  PubMed  Google Scholar 

  • Bergmann Tiest WM, Kappers A (2006) Haptic and visual perception of roughness. Acta Psychol 124:177–189

    Article  Google Scholar 

  • Bensmaïa SJ, Hollins M (2003) The vibrations of texture. Somatosens Mot Res 20:33–43

    Article  PubMed  Google Scholar 

  • Bensmaïa SJ, Hollins M (2005) Pacinian representations of fine surface texture Percept Psychophys 67:842–854B

    Article  PubMed  Google Scholar 

  • Bensmaïa SJ, Hollins M, Yau J (2005) Vibrotactile information in the Pacinian system: a psychophysical model. Percept Psychophys 67:828–841

    Article  PubMed  Google Scholar 

  • Binns H (1936) Visual and tactual ‘judgement’ as illustrated in a practical experiment. Br J Psychol 27: 404–410

    Google Scholar 

  • Björkman M (1967) Relations between intra-modal and cross-modal matching. Scand J Psychol 8:65–76

    Article  PubMed  Google Scholar 

  • Blake DT, Hsiao SS, Johnson KO (1997) Neural coding mechanisms in tactile pattern recognition: the relative contributions of slowly and rapidly adapting mechanoreceptors to perceived roughness. J Neurosci 17:7480–7489

    PubMed  CAS  Google Scholar 

  • Burton H, MacLeod A-MK, Videen T, Raichle ME (1997) Multiple foci in parietal and frontal cortex activated by rubbing embossed grating patterns across fingerpads: a positron emission tomography study in humans. Cereb Cortex 7:3–17

    Article  PubMed  CAS  Google Scholar 

  • Burton H, Abend NS, MacLeod AM, Sinclair RJ, Snyder AZ, Raichle ME (1999) Tactile attention tasks enhance activation in somatosensory regions of parietal cortex: a positron emission tomography study. Cereb Cortex 9:662–674

    Article  PubMed  CAS  Google Scholar 

  • Cascio CJ, Sathian K (2001) Temporal cues contribute to tactile perception of roughness. J Neurosci 21:5289–5296

    PubMed  CAS  Google Scholar 

  • Chapman CE, Smith AM (2009) Tactile texture. In: Squire L (ed) Encyclopedia of neuroscience. Academic Press, Oxford, pp 857–861

    Chapter  Google Scholar 

  • Connor CE, Hsiao SS, Phillips JR, Johnson KO (1990) Tactile rough-ness: neural codes that account for psychophysical magnitude estimates. J Neurosci 10:3823–3836

    PubMed  CAS  Google Scholar 

  • Connor CE, Johnson KO (1992) Neural coding of tactile texture: comparisons of spatial and temporal mechanisms for roughness perception. J Neurosci 12:3414–3426

    PubMed  CAS  Google Scholar 

  • Cooke T, Jäkel F, Wallraven C, Bülthoff HH (2007) Multimodal similarity and categorization of novel, three-dimensional objects. Neuropsychologia 45(3):484–495

    Article  PubMed  Google Scholar 

  • Cooke T, Kannengiesser S, Wallraven C, Bülthoff HH (2006) Object feature validation using visual and haptic similarity ratings. ACM Trans Appl Percept 3(3):239–261

    Article  Google Scholar 

  • Drewing K, Ernst MO, Lederman SJ Klatzky RL (2004) Roughness and spatial density judgments on visual and haptic textures using virtual reality. Presented at Euro-Haptics Conference, Munich, Germany

    Google Scholar 

  • Ernst MO, Banks MS (2002)  Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–433

    Article  Google Scholar 

  • Gamzu E, Ahissar E (2001) Importance of temporal cues for tactile spatial- frequency discrimination. J Neurosci 21(18):7416–7427

    PubMed  CAS  Google Scholar 

  • Gescheider GA, Bolanowski SJ, Greenfield TC, Brunette KE (2005) Perception of the tactile texture of raised-dot patterns: a multidimensional analysis. Somatosens Mot Res 22(3):127–140

    Article  PubMed  Google Scholar 

  • Gibson JJ (1950) The perception of the visual world. Houghton Mifflin, New York

    Google Scholar 

  • Guest S, Catmur C, Lloyd D, Spence C (2002) Audiotactile interactions in roughness perception. Exp Brain Res 146:161–171

    Article  PubMed  Google Scholar 

  • Guest S, Spence C (2003) Tactile dominance in speeded discrimination of pilled fabric samples. Exp Brain Res 150:201–207

    PubMed  Google Scholar 

  • Johnson KO, Hsaio SS, Yoshioko T (2002) Neural coding and the basic law of psychophysics. Neuroscientist 8:111–121

    Article  PubMed  Google Scholar 

  • Jousmaki V, Hari R (1998) Parchment-skin illusion: sound-biased touch. Curr Biol 8:R190

    Article  PubMed  CAS  Google Scholar 

  • Harvey LO, Gervais MJ (1981) Internal representation of visual texture as the basis for the judgment of similarity. J Exp Psychol: Human Percept Perform 7(4):741–753

    Article  Google Scholar 

  • Heller MA (1982) Visual and tactual texture perception: intersensory cooperation. Percept Psychophys 31(4):339–344

    Article  PubMed  CAS  Google Scholar 

  • Heller MA (1989) Texture perception in sighted and blind observers. Percept Psychophys 45(1):49–54

    Article  PubMed  CAS  Google Scholar 

  • Ho Y-X, Landy MS, Maloney LT (2006) How direction of illumination affects visually perceived surface roughness. J Vis 6(5):8:634–648, http://journalofvision.org/6/5/8/, doi:10.1167/6.5.8

    Article  PubMed  Google Scholar 

  • Hollins M, Bensmaïa S, Karlof K, Young F (2000) Individual differences in perceptual space for tactile textures: evidence from multidimensional scaling. Percept Psychophys 62(8):1534–1544

    Article  PubMed  CAS  Google Scholar 

  • Hollins M, Bensmaïa S, Risner SR (1998) The duplex theory of texture perception. Proceedings of the 14th annual meeting of the international society for psychophysics, pp 115–120

    Google Scholar 

  • Hollins M, Bensmaïa SJ, Washburn S (2001) Vibrotactile adaptation impairs discrimination of fine, but not coarse, textures.  Somatosens Mot Res 18:253–262

    Article  PubMed  CAS  Google Scholar 

  • Hollins M, Faldowski R, Rao S, Young F (1993) Perceptual dimensions of tactile surface texture: a multidimensional scaling analysis. Percept Psychophys 54(6):697–705

    Article  PubMed  CAS  Google Scholar 

  • Hollins M, Lorenz F, Seeger A, Taylor R (2005) Factors contributing to the integration of textural qualities: evidence from virtual surfaces. Somatosens Mot Res 22(3):193–206

    Article  PubMed  Google Scholar 

  • Hollins M, Lorenz F, Harper D (2006)  Somatosensory coding of roughness: the effect of texture adaptation in direct and indirect touch. J Neurosci 26:5582–5588

    Article  PubMed  CAS  Google Scholar 

  • Johnson KO, Hsiao SS Yoshioka T (2002) Neural coding and the basic law of psychophysics. Neuroscientist 8:111–121

    Article  PubMed  Google Scholar 

  • Julesz B (1984) A brief outline of the texton theory of human vision. Trends Neurosci 7:41–45

    Article  Google Scholar 

  • Julesz B, Bergen JR (1983) Textons, the fundamental elements in preattentive vision and perception of textures. Bell Syst Tech J 62:1619–1645

    Google Scholar 

  • Kastner S, De Weerd P, Ungerleider LG (2000) Texture segregation in the human visual cortex: a functional MRI study. J Neurophysiol 83:2453–247

    PubMed  CAS  Google Scholar 

  • Kirchner E, van den Kieboom G-J, Njo L, Supèr R, Gottenbos R (2007) Observation of visual texture of metallic and pearlescent materials. Color Res Appl 32:256–266

    Article  Google Scholar 

  • Kitada R, Hashimoto T, Kochiyama T, Kito T, Okada T, Matsumura M, Lederman SJ, Sadata N (2005) Tactile estimation of the roughness of gratings yields a graded response in the human brain: An fMRI study. NeuroImage 25:90–100

    Article  PubMed  Google Scholar 

  • Klatzky RL, Lederman SJ (1999) Tactile roughness perception with a rigid link interposed between skin and surface Percept Psychophys 61:591–607

    Article  PubMed  CAS  Google Scholar 

  • Klatzky RL, Lederman S (2008) Perceiving object properties through a rigid link. In: Lin M, Otaduy M (eds) Haptic rendering: foundations, algorithms, and applications. A K Peters, Ltd, Wellesley, MA, pp 7–19

    Chapter  Google Scholar 

  • Klatzky RL, Lederman SJ, Hamilton C, Grindley M, Swendson RH (2003) Feeling textures through a probe: effects of probe and surface geometry and exploratory factors. Percept Psychophys 65:613–631

    Article  PubMed  Google Scholar 

  • Klatzky R, Lederman SJ, Reed C (1987) There’s more to touch than meets the eye: the salience of object attributes for haptics with and without vision. J Exp Psychol: Gen 116(4):356–369

    Article  Google Scholar 

  • LaMotte RH, Srinivasan MA (1991) Surface microgeometry: tactile perception and neural encoding. In: Franzen O, Westman J (eds) Information processing in the somatosensory system. Macmillan, London, pp 49–58

    Google Scholar 

  • Landy MS, Graham N (2004) Visual perception of texture. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MIT Press, Cambridge, MA, pp 1106–1118

    Google Scholar 

  • Ledberg A, O’Sullivan BT, Kinomura S, Roland PE (1995) Somatosensory activations of the parietal operculum of man. A PET study. Eur J Neurosci 7:1934–1941

    Article  PubMed  CAS  Google Scholar 

  • Lederman SJ, Klatzky RL (2004) Multisensory texture perception. In: Calvert E, Spence C, Stein B (eds) Handbook of multisensory processes. MIT Press, Cambridge, MA, pp 107–122

    Google Scholar 

  • Lederman SJ (1974) Tactile roughness of grooved surfaces: the touching process and effects of macro and microsurface structure. Percept Psychophys 16:385–395

    Article  Google Scholar 

  • Lederman SJ (1979) Auditory texture perception. Perception 8:93–103

    Article  PubMed  CAS  Google Scholar 

  • Lederman SJ (1983) Tactual roughness perception: spatial and temporal determinants. Can J Psychol 37:498–511

    Article  Google Scholar 

  • Lederman SJ, Abbott SG (1981) Texture perception: studies of intersensory organization using a discrepancy paradigm, and visual versus tactual psychophysics. J Exp Psychol: Human Percept Perform 7:902–915

    Article  CAS  Google Scholar 

  • Lederman SJ, Klatzky RL, Hamilton C, Grindley M (2000) Perceiving surface roughness through a probe: effects of applied force and probe diameter. Proc ASME Dyn Syst Contr Div DSC-vol. 69–2:1065–1071

    Google Scholar 

  • Lederman SJ, Klatzky RL, Morgan T, Hamilton C (2002) Integrating multimodal information about surface texture via a probe: relative contributions of haptic and touch-produced sound sources. 10th symposium on haptic interfaces for virtual environment and teleoperator systems. IEEE Computer Society, Los Alamitos, CA, pp 97–104

    Google Scholar 

  • Lederman SJ, Loomis JM, Williams D (1982) The role of vibration in tactual perception of roughness. Percept Psychophys 32:109–116

    Article  PubMed  CAS  Google Scholar 

  • Lederman S, Summers C, Klatzky R (1996) Cognitive salience of haptic object properties: role of modality-encoding bias. Perception 25(8):983–998

    Article  PubMed  CAS  Google Scholar 

  • Lederman SJ, Taylor MM (1972) Fingertip force surface geometry and the perception of roughness by active touch. Percept Psychophys 12:401–408

    Article  Google Scholar 

  • Lederman SJ, Taylor MM (1972) Fingertip force surface geometry and the perception of roughness by active touch. Percept Psychophys 12:401–408

    Article  Google Scholar 

  • Lederman SJ, Thorne G, Jones B (1986) Perception of texture by vision and touch: multidimensionality and intersensory integration. J Exp Psychol: Human Percept Perform 12:169–180

    Article  CAS  Google Scholar 

  • Meftah E-M, Belingard L, Chapman CE (2000) Relative effects of the spatial and temporal characteristics of scanned surfaces on human perception of tactile roughness using passive touch. Exp Brain Res 132:351–361

    Article  Google Scholar 

  • Merabet LB, Hamilton R, Schlaug G, Swisher JD, Kiriakopoulos ET, Pitskel NB, Kauffman T, Pascual-Leone A (2008) Rapid and reversible recruitment of early visual cortex for touch. PLoS ONE 3(8):e3046. doi:10.1371/journal.pone.0003046

    Article  PubMed  Google Scholar 

  • O’Sullivan BT, Roland PE, Kawashima R (1994) A PET study of somatosensory discrimination in man. Microgeometry versus macrogeometry. Eur J Neurosci 6:137–148

    Article  PubMed  Google Scholar 

  • Pascual-Leone A, Hamilton R (2001) The metamodal organization of the brain. In: Casanova C, Ptito M (eds) Progress in brain research vol. 134, Chapter 27. Amsterdam, Elsevier, pp 1–19

    Google Scholar 

  • Picard D, Dacremont C, Valentin D, Giboreau A (2003) Perceptual dimensions of tactile textures. Acta Psychol 114(2):165–184

    Article  Google Scholar 

  • Plomp R, Steeneken HJ (1968) Interference between two simple tones. J Acoust Soc Am 43(4):883–884

    Article  PubMed  CAS  Google Scholar 

  • Pont SC, Koenderink JJ (2005) Bidirectional texture contrast function. Int J Comp Vis 66:17–34

    Google Scholar 

  • Rao AR, Lohse GL (1996) Towards a texture naming system: identifying relevant dimensions of texture. Vis Res 36(11):1649–1669

    Article  PubMed  CAS  Google Scholar 

  • Rasch R, Plomp R (1999) The perception of musical tones. In: Deutsch D (ed) The psychology of music, 2nd edn. Academic Press, San Diego, CA, pp 89–112

    Chapter  Google Scholar 

  • Roland PE, O’Sullivan B, Kawashima R (1998) Shape and roughness activate different somatosensory areas in the human brain. Proc Natl Acad Sci 95:3295–3300

    Article  PubMed  CAS  Google Scholar 

  • Ross HE (1997) On the possible relations between discriminability and apparent magnitude. Br J Math Stat Psychol 50:187–203

    Article  Google Scholar 

  • Servos P, Lederman S, Wilson D, Gati J (2001) fMRI-derived cortical maps for haptic shape texture and hardness. Cogn Brain Res 12:307–313

    Article  CAS  Google Scholar 

  • Smith AM, Chapman E, Deslandes M, Langlais J-S, Thibodeau M-P (2002) Role of friction and tangential force variation in the subjective scaling of tactile roughness. Exp Brain Res 144: 211–223

    Article  PubMed  Google Scholar 

  • Srinivasan MA, Whitehouse JM, LaMotte RH (1990) Tactile detection of slip: surface microgeometry and peripheral neural codes. J Neurophysiol 63:1323–1332

    PubMed  CAS  Google Scholar 

  • Stilla R, Sathian K (2008) Selective visuo-haptic processing of shape and texture. Human Brain Map 29:1123–1138

    Article  Google Scholar 

  • Suzuki Y, Gyoba J, Sakamoto S (2008) Selective effects of auditory stimuli on tactile roughness perception. Brain Res 1242:87–94

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Suzuki M, Gyoba J (2006) Effects of auditory feedback on tactile roughness perception. Tohoku Psychol Folia 65:45–56

    Google Scholar 

  • Taylor MM, Lederman SJ (1975) Tactile roughness of grooved surfaces: a model and the effect of friction. Percept Psychophys 17:23–36

    Article  Google Scholar 

  • Treisman A (1982) Perceptual grouping and attention in visual search for features and for objects. J Exp Psychol: Human Percept Perform 8:194–214

    Article  CAS  Google Scholar 

  • Unger BJ (2008) Psychophysics of virtual texture perception. Technical Report CMU-RI-TR-08-45, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA

    Google Scholar 

  • Unger B, Hollis R, Klatzky R (2007) JND analysis of texture roughness perception using a magnetic levitation haptic device. Proceedings of the second joint eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems, IEEE Computer Society, Los Alamitos, CA, 22–24 March 2007, pp 9–14

    Book  Google Scholar 

  • Unger B, Hollis R, Klatzky R (2008) The geometric model for perceived roughness applies to virtual textures. Proceedings of the 2008 symposium on haptic interfaces for virtual environments and teleoperator systems, 13–14 March 2008, IEEE Computer Society, Los Alamitos, CA, pp 3–10

    Google Scholar 

  • Whitaker TA, Simões-Franklin C, Newell FN (2008) Vision and touch: independent or integrated systems for the perception of texture? Brain Res 1242:59–72

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka T, Bensmaïa SJ, Craig JC, Hsiao SS (2007) Texture perception through direct and indirect touch: an analysis of perceptual space for tactile textures in two modes of exploration. Somatosens Mot Res 24(1–2):53–70

    Article  PubMed  CAS  Google Scholar 

  • Zampini M, Spence C (2004) The role of auditory cues in modulating the perceived crispness and staleness of potato chips. J Sens Stud 19:347–363

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta L. Klatzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Klatzky, R.L., Lederman, S.J. (2010). Multisensory Texture Perception. In: Kaiser, J., Naumer, M. (eds) Multisensory Object Perception in the Primate Brain. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5615-6_12

Download citation

Publish with us

Policies and ethics