Advertisement

Challenges in the Design of Active and Durable Alloy Nanocatalysts for Fuel Cells

  • P. B. Balbuena
  • S. R. Calvo
  • R. Callejas-Tovar
  • Z. Gu
  • G. E. Ramirez-Caballero
  • P. Hirunsit
  • Y. Ma
Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 50)

Abstract

Nanoparticles –from a few Angstroms to tens of nanometers- have been used as catalysts well before the word nanotechnology became popular. It is not surprising to expect that very small particles, having a large surface/volume ratio and a large proportion of low-coordinated sites may be much more reactive than flat surfaces. However, obtaining a uniform catalyst material, with welldefined particle size and surface composition is still an extremely difficult task. If in addition, the catalyst needs to stand a harsh environment, where not only the target reaction, but also other undesired corrosion reactions may take place, the catalyst synthesis and the performance of the catalyst under reaction conditions becomes even much more complex.

Keywords

Fuel Cell Adsorption Energy Oxygen Reduction Reaction Surface Segregation Oxygen Reduction Reaction Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    S. Mukerjee, S. Srinivasan, and M. P. Soriaga, J. Phys. Chem. 99 (1995) 4577.Google Scholar
  2. 2.
    S. Mukerjee, S. Srinivasan, M. P. Soriaga, and J. McBreen, Journal of the Electrochemical Society 142 (1995) 1409.Google Scholar
  3. 3.
    U. A. Paulus, A. Vokaun, G. G. Scherer, T. J. Schmidt, V. Stamenkovic, N. M. Markovic, and P. N. Ross, Electrochim. Acta 47 (2002) 3787.Google Scholar
  4. 4.
    U. A. Paulus, A. Vokaun, G. G. Scherer, T. J. Schmidt, V. Stamenkovic, V. Radmilovic, N. M. Markovic, and P. N. Ross, J. Phys. Chem. B 106 (2002) 4181.Google Scholar
  5. 5.
    V. Stamenkovic, T. J. Schmidt, P. N. Ross, and N. M. Markovic, J. Phys. Chem. B 106 (2002) 11970.Google Scholar
  6. 6.
    T. Toda, H. Igarashi, H. Uchida, and M. Watanabe, J. Electrochem. Soc. 146 (1999) 3750.Google Scholar
  7. 7.
    T. Toda, H. Igarashi, and M. Watanabe, J. Electroanal. Chem. 460 (1999) 258.Google Scholar
  8. 8.
    C. T. Campbell, G. Ertl, H. Kuipers, and J. Segner, Surf. Sci. 107 (1981) 220.Google Scholar
  9. 9.
    J. L. Gland, Surf. Sci. 93 (1980) 487.Google Scholar
  10. 10.
    J. L. Gland, B. A. Sexton, and G. B. Fisher, Surf. Sci. 95 (1980) 587.Google Scholar
  11. 11.
    Y. T. Yeo, L. Vattuone, and D. A. King, J. Chem. Phys. 106 (1997) 392.Google Scholar
  12. 12.
    T. Jacob, R. P. Muller, and W. A. Goddard, Journal of Physical Chemistry B 107 (2003) 9465.Google Scholar
  13. 13.
    T. Jacob, B. V. Merinov, and W. A. Goddard, Chemical Physics Letters 385 (2004) 374.Google Scholar
  14. 14.
    T. Jacob, and W. A. Goddard, III, Journal of Physical Chemistry B 108 (2004) 8311.Google Scholar
  15. 15.
    Y. Xu, A. V. Ruban, and M. Mavrikakis, Journal of the American Chemical Society 126 (2004) 4717.Google Scholar
  16. 16.
    G. S. Karlberg, Physical Review B: Condensed Matter and Materials Physics 74 (2006) 153414/1.Google Scholar
  17. 17.
    C. A. Menning, H. H. Hwu, and J. G. Chen, Journal of Physical Chemistry B 110 (2006) 15471.Google Scholar
  18. 18.
    M. P. Hyman, and J. W. Medlin, Journal of Physical Chemistry C 111 (2007) 17052.Google Scholar
  19. 19.
    Y. Gauthier, Y. Joly, R. Baudoing, and J. Rundgren, Physical Review B 31 (1985) 6216.Google Scholar
  20. 20.
    M. Lundberg, Physical Review B 36 (1987) 4692.Google Scholar
  21. 21.
    Y. Gauthier, Surface Review and Letters 3 (1996) 1663.Google Scholar
  22. 22.
    Y. Gauthier, R. Baudoing-Savois, J. M. Bugnard, U. Bardi, and A. Atrei, Surface Science 276 (1992) 1.Google Scholar
  23. 23.
    J. Zhang, M. B. Vukmirovic, Y. Xu, M. Mavrikakis, and R. R. Adzic, Angewandte Chemie, International Edition 44 (2005) 2132.Google Scholar
  24. 24.
    V. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley, and J. K. Norskov, Angewandte Chemie, International Edition 45 (2006) 2897.Google Scholar
  25. 25.
    V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, and N. M. Markovic, Science (Washington, DC, United States) 315 (2007) 493.Google Scholar
  26. 26.
    P. J. Ferreira, O. G. J. Ia, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, and H. A. Gasteiger, J. Electrochem. Soc. 152 (2005) A2256.Google Scholar
  27. 27.
    P. Yu, M. Pemberton, and P. Plasse, Journal of Power Sources 144 (2005) 11.Google Scholar
  28. 28.
    C. A. Menning, H. H. Hwu, and J. G. G. Chen, Journal of Physical Chemistry B 110 (2006) 15471.Google Scholar
  29. 29.
    V. Stamenkovic, T. J. Schmidt, P. N. Ross, and N. M. Markovic, Journal of Electroanalytical Chemistry 554-555 (2003) 191.Google Scholar
  30. 30.
    L. J. Wan, T. Moriyama, M. Ito, H. Uchida, and M. Watanabe, Chemical Communications (2002) 58.Google Scholar
  31. 31.
    U. Bardi, A. Atrei, G. Rovida, and P. N. Ross, Surface Science 251-252 (1991) 727.Google Scholar
  32. 32.
    J. R. Kitchin, J. K. Norskov, M. A. Barteau, and J. G. Chen, Journal of Chemical Physics 120 (2004) 10240.Google Scholar
  33. 33.
    X. P. Wang, R. Kumar, and D. J. Myers, Electrochem. Sol. St. Lett. 9 (2006) A225.Google Scholar
  34. 34.
    K. Yasuda, A. Taniguchi, T. Akita, T. Ioroi, and Z. Siroma, Phys. Chem. Chem. Phys. 8 (2006) 746.Google Scholar
  35. 35.
    J. Greeley, and J. K. Norskov, Electrochim. Acta 52 (2007) 5829.Google Scholar
  36. 36.
    Y. Ma, and P. B. Balbuena, J. Phys. Chem. C 112 (2008) 14520.Google Scholar
  37. 37.
    Z. Gu, and P. B. Balbuena, J. Phys. Chem. A 110 (2006) 9783.Google Scholar
  38. 38.
    Z. Gu, and P. B. Balbuena, J. Phys. Chem. C 111 (2007) 9877.Google Scholar
  39. 39.
    Z. Gu, and P. B. Balbuena, J. Phys. Chem. C 111 (2007) 17388.Google Scholar
  40. 40.
    Z. Gu, and P. B. Balbuena, J. Phys. Chem. C 112 (2008) 5057.Google Scholar
  41. 41.
    G. E. Ramirez-Caballero, and P. B. Balbuena, Chem. Phys. Lett. (2008) 64.Google Scholar
  42. 42.
    M. Polak, and L. Rubinovich, Surface Science Reports 38 (2000) 127.Google Scholar
  43. 43.
    M. Mantina, Y. Wang, R. Arroyave, L. Q. Chen, Z. K. Liu, and C. Wolverton, Physical Review Letters 100 (2008) 4.Google Scholar
  44. 44.
    Y. Ma, and P. B. Balbuena, Surf. Sci. 602 (2008) 107.Google Scholar
  45. 45.
    Y. Ma, and P. B. Balbuena, J. Chem. Theory Comput. 4 (2008) 1991.Google Scholar
  46. 46.
    Y. Ma, and P. B. Balbuena, Surf. Sci. 603 (2009) 349.Google Scholar
  47. 47.
    E. Antolini, Journal of Materials Science 38 (2003) 2995.Google Scholar
  48. 48.
    J. G. Chen, C. A. Menning, and M. B. Zellner, Surface Science Reports 63 (2008) 201.Google Scholar
  49. 49.
    N. Tian, Z.-Y. Zhou, and S.-G. Sun, J. Phys. Chem. C 112 (2008) 19801.Google Scholar
  50. 50.
    A. Damjanovic, D. B. Sepa, and M. V. Vojnovic, Electrochim. Acta 24 (1979) 887.Google Scholar
  51. 51.
    R. A. Sidik, and A. B. Anderson, J. Electroanal. Chem. 528 (2002) 69.Google Scholar
  52. 52.
    Y. Wang, and P. B. Balbuena, J. Phys. Chem. B 108 (2004) 4376.Google Scholar
  53. 53.
    Y. Wang, and P. B. Balbuena, J. Phys. Chem. B 109 (2005) 14896.Google Scholar
  54. 54.
    Y. Ma, and P. B. Balbuena, Chem. Phys. Lett. 440 (2007) 130.Google Scholar
  55. 55.
    J. L. Fernandez, D. A. Walsh, and A. J. Bard, J. Am Chem. Soc. 127 (2005) 357.Google Scholar
  56. 56.
    Y. Wang, and P. B. Balbuena, J. Chem. Theory and Comp. 1 (2005) 935.Google Scholar
  57. 57.
    Y. Wang, and P. B. Balbuena, J. Phys. Chem. B 109 (2005) 18902.Google Scholar
  58. 58.
    S. R. Calvo, and P. B. Balbuena, Surf. Sci. 601 (2007) 165.Google Scholar
  59. 59.
    S. R. Calvo, and P. B. Balbuena, Surf. Sci. 601 (2007) 4786.Google Scholar
  60. 60.
    G. Kresse, and J. Hafner, Physical Review B: Condensed Matter and Materials Physics 48 (1993) 13115.Google Scholar
  61. 61.
    G. Kresse, and J. Furthmueller, Physical Review B: Condensed Matter 54 (1996) 11169.Google Scholar
  62. 62.
    P. E. Blochl, Phys. Rev. B 50 (1994) 17953.Google Scholar
  63. 63.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Physical Review Letters 77 (1996) 3865.Google Scholar
  64. 64.
    H. J. Monkhorst, and J. D. Pack, Phys. Rev. B 13 (1976) 5188.Google Scholar
  65. 65.
    M. Methfessel, and A. T. Paxton, Physical Review B 40 (1989) 3616.Google Scholar
  66. 66.
    A. Kootte, C. Haas, and R. A. De Groot, Journal of Physics: Condensed Matter 3 (1991) 1133.Google Scholar
  67. 67.
    D. R. Lide (Ed.)^(Eds.), Handbook of Chemistry and Physics. CRC Press, Boca Raton, 1997.Google Scholar
  68. 68.
    Y. Xu, A. V. Ruban, and M. Mavrikakis, J. Am. Chem. Soc. 126 (2004) 4717.Google Scholar
  69. 69.
    A. Panchenko, M. T. M. Koper, T. E. Shubina, S. J. Mitchell, and E. Roduner, J. Electrochem. Soc. 151 (2004) A2016.Google Scholar
  70. 70.
    G. S. Karlberg, Phys. Rev. B 74 (2006) 153414.Google Scholar
  71. 71.
    J. R. Kitchin, J. K. Norskov, M. A. Barteau, and J. G. Chen, Phys. Rev. Lett. 93 (2004) 156801.Google Scholar
  72. 72.
    J. Greeley, J. K. Norskov, and M. Mavrikakis, Ann. Rev. Phys. Chem. 53 (2002) 319.Google Scholar
  73. 73.
    J. Zhang, M. B. Vukmirovic, K. Sasaki, A. U. Nilekar, M. Mavrikakis, and R. R. Adzic, Journal of the American Chemical Society 127 (2005) 12480.Google Scholar
  74. 74.
    J. Zhang, M. B. Vukmirovic, Y. Xu, M. Mavrikakis, and R. R. Adzic, Angew. Chem. Int. Ed. 44 (2005) 2132.Google Scholar
  75. 75.
    Y. Y. Shao, G. P. Yin, and Y. Z. Gao, Journal of Power Sources 171 (2007) 558.Google Scholar
  76. 76.
    J. K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, and H. Jonsson, J. Phys. Chem. B 108 (2004) 17886.Google Scholar
  77. 77.
    B. Hammer, and J. K. Norskov, Surf. Sci. 343 (1995) 211.Google Scholar
  78. 78.
    P. Sabatier: La Catalyse en Chimie Organique, Libraire Olytechnique, Paris, 1913.Google Scholar
  79. 79.
    T. Jacob, Fuel Cells (Weinheim, Germany) 6 (2006) 159.Google Scholar
  80. 80.
    Y. Ma, and P. B. Balbuena, Chem. Phys. Lett. 447 (2007) 289.Google Scholar
  81. 81.
    M. B. Knickelbein, Ann. Rev. Phys. Chem. 115 (1999) 50.Google Scholar
  82. 82.
    T. Rades, V. Y. Borokov, V. B. Kazansky, M. Polisset-Thfoin, and J. Fraissard, J. Phys. Chem. 100 (1996) 16238.Google Scholar
  83. 83.
    N. Combe, P. Jensen, and A. Pimpinelli, Phys. Rev. Lett. 85 (2000) 110.Google Scholar
  84. 84.
    M. Fernandez-Garcia, J. A. Anderson, and G. L. Haller, J. Phys. Chem. 100 (1996) 16247.Google Scholar
  85. 85.
    M. Heinebrodt, N. Malinowski, F. Tast, W. Branz, I. M. l. Billas, and T. P. Martin, J. Chem. Phys. 110 (1999) 9915.Google Scholar
  86. 86.
    S. Horch, H. T. Lorensen, S. Helveg, E. Laegsgaard, I. Stensgaard, K. W. Jacobsen, J. K. Norskov, and F. Besenbacher, Nature 398 (1999) 134.Google Scholar
  87. 87.
    I. A. Abrikosov, A. V. Ruban, H. L. Skriver, and B. Johansson, Phys. Rev. B 50 (1994) 2039.Google Scholar
  88. 88.
    A. V. Ruban, H. L. Skriver, and J. K. Norskov, Phys. Rev. B 59 (1999) 15990.Google Scholar
  89. 89.
    J. J. Burton, and R. S. Polizzotti, Surface Science 66 (1977) 1.Google Scholar
  90. 90.
    R. G. Donnelly, and T. S. King, Surf. Sci. 74 (1978) 89.Google Scholar
  91. 91.
    T. S. King, and R. G. Donnelly, Surf. Sci. 141 (1984) 417.Google Scholar
  92. 92.
    S. M. Foiles, Phys. Rev. B 32 (1985) 7685.Google Scholar
  93. 93.
    J. K. Strohl, and T. S. King, Journal of Catalysis 116 (1989) 540.Google Scholar
  94. 94.
    D. S. Mainardi, and P. B. Balbuena, Langmuir 17 (2001) 2047.Google Scholar
  95. 95.
    D. S. Mainardi, and P. B. Balbuena, Int. J. Quant. Chem. 85 (2001) 580.Google Scholar
  96. 96.
    L. V. Pourovskii, A. V. Ruban, I. A. Abrikosov, Y. K. Vekilov, and B. Johansson, Physical Review B: Condensed Matter and Materials Physics 64 (2001) 035421/1.Google Scholar
  97. 97.
    E. E. Zhurkin, and M. Hou, J. Phys. Condens. Matter 12 (2000) 6735.Google Scholar
  98. 98.
    J. M. Martinez-DeLaHoz, R. Callejas-Tovar, and P. B. Balbuena, Mol. Sim. 35 (2009) 785.Google Scholar
  99. 99.
    B. S. Mun, M. Watanabe, M. Rossi, V. Stamenkovic, N. M. Markovic, and P. N. Ross, Jr., Journal of Chemical Physics 123 (2005) 204717/1.Google Scholar
  100. 100.
    J. L. Rousset, A. M. Cadrot, L. Lianos, and A. J. Renouprez, European Physical Journal D: Atomic, Molecular and Optical Physics 9 (1999) 425.Google Scholar
  101. 101.
    W. Chen, L. Severin, M. Goethelid, M. Hammer, S. Cameron, and J. Paul, Physical Review B: Condensed Matter and Materials Physics 50 (1994) 5620.Google Scholar
  102. 102.
    S. Gallego, C. Ocal, M. C. Munoz, and F. Soria, Physical Review B: Condensed Matter 56 (1997) 12139.Google Scholar
  103. 103.
    R. Callejas-Tovar, and P. B. Balbuena, Surf. Sci. 602 (2008) 3531.Google Scholar
  104. 104.
    B. Bhatia, and D. S. Sholl, J. Chem. Phys. 122 (2005) 204707.Google Scholar
  105. 105.
    T. T. Tsong, Y. S. Ng, and S. B. McLane, Jr., Journal of Chemical Physics 73 (1980) 1464.Google Scholar
  106. 106.
    S. E. Hoernstroem, L. I. Johansson, and A. Flodstroem, Applied Surface Science 26 (1986) 27.Google Scholar
  107. 107.
    Y. Gauthier, R. Baudoing-Savois, J. M. Bugnard, W. Hebenstreit, M. Schmid, and P. Varga, Surface Science 466 (2000) 155.Google Scholar
  108. 108.
    Y. Gauthier, R. Baudoing-Savois, J. J. W. M. Rosink, and M. Sotto, Surface Science 297 (1993) 193.Google Scholar
  109. 109.
    P. J. Ferreira, G. J. la O, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, and H. A. Gasteiger, Journal of the Electrochemical Society 152 (2005) A2256.Google Scholar
  110. 110.
    J. Xie, D. L. Wood, D. M. Wayne, T. A. Zawodzinski, P. Atanassov, and R. L. Borup, J. Electrochem. Soc. 152 (2005) A104.Google Scholar
  111. 111.
    R. M. Darling, and J. P. Meyers, J. Electrochem. Soc. 150 (2003) A1523.Google Scholar
  112. 112.
    R. M. Darling, and J. P. Meyers, Kinetic model of platinum dissolution in PEM fuel cells in E. Society (Ed.), Proton Conducting Membrane Fuel Cells III, 2005, p. 44.Google Scholar
  113. 113.
    K. Yasuda, A. Taniguchi, T. Akita, T. Ioroi, and Z. Siroma, J. Electrochem. Soc. 153 (2006) A1599.Google Scholar
  114. 114.
    H. R. Colon-Mercado, and B. N. Popov, J. Power Sources 155 (2005) 253.Google Scholar
  115. 115.
    N. McMillan, T. Lele, C. Snively, and J. Lauterbach, Cat. Today 105 (2005) 244.Google Scholar
  116. 116.
    F. P. Leisenberger, G. Koller, M. Sock, S. Surnev, M. G. Ramsey, F. P. Netzer, B. Klotzer, and K. Hayek, Surf. Sci. 445 (2000) 380.Google Scholar
  117. 117.
    A. V. Walker, B. Klotzer, and D. A. King, J. Chem. Phys. 112 (2000) 8631.Google Scholar
  118. 118.
    R. Blume, H. Niehus, H. Conrad, and A. Bottcher, J. Chem. Phys. 120 (2004) 3871.Google Scholar
  119. 119.
    R. Blume, H. Niehus, H. Conrad, A. Bottcher, L. Aballe, L. Gregoratti, A. Barinov, and M. Kiskinova, J. Phys. Chem. B 109 (2005) 14052.Google Scholar
  120. 120.
    M. K. Rose, A. Borg, T. Mitsui, D. F. Ogletree, and M. Salmeron, J. Chem. Phys. 115 (2001) 10927.Google Scholar
  121. 121.
    M. Monine, L. Pismen, M. Bar, and M. Or-Guil, J. Chem. Phys. 117 (2002) 4473.Google Scholar
  122. 122.
    Y. Xu, J. Greeley, and M. Mavrikakis, J. Am. Chem. Soc. 127 (2005) 12823.Google Scholar
  123. 123.
    H. H. Rotermund, M. Pollmann, and I. G. Kevrekidis, Chaos 12 (2002) 157.Google Scholar
  124. 124.
    H. Over, and A. P. Seitsonen, Science 297 (2002) 2003.Google Scholar
  125. 125.
    D. V. Savinova, E. B. Molodkina, A. I. Danilov, and Y. M. Polukarov, Russ. J. Electrochem. 40 (2004) 683.Google Scholar
  126. 126.
    D. V. Savinova, E. B. Molodkina, A. I. Danilov, and Y. M. Polukarov, Russ. J. Electrochem. 40 (2004) 687.Google Scholar
  127. 127.
    Z. Nagy, and H. You, Electrochimica Acta 47 (2002) 3037.Google Scholar
  128. 128.
    G. Jerkiewicz, G. Vatankhah, J. Lessard, M. P. Soriaga, and Y.-S. Park, Electrochim. Acta 49 (2004) 1451.Google Scholar
  129. 129.
    M. H. Shao, K. Sasaki, and R. R. Adzic, J. Am. Chem. Soc. 128 (2006) 3526.Google Scholar
  130. 130.
    F. Tian, and A. B. Anderson, J. Phys. Chem. C 112 (2008) 18566.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • P. B. Balbuena
    • 1
  • S. R. Calvo
    • 1
  • R. Callejas-Tovar
    • 1
  • Z. Gu
    • 1
  • G. E. Ramirez-Caballero
    • 1
  • P. Hirunsit
    • 1
  • Y. Ma
    • 1
  1. 1.Department of Chemical EngineeringTexas A&M UniversityTXUSA

Personalised recommendations