A review of Continuum Electrochemical Engineering Models and a Novel Monte Carlo Approach to Understand Electrochemical Behavior of Lithium-Ion Batteries

  • Vinten D. Diwakar
  • S. Harinipriya
  • Venkat R. Subramanian
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 50)


Electrochemical phenomenon associated with systems from electrochemical energy (Batteries, Fuel cells and capacitors) to electro deposition are multistep and multi-phenomena processes and hence can be very tedious to simulate. The multi-phenomena characteristics of the processes involved in electro deposition and other electrochemical systems including electrochemical power sources pose inherent difficulties in writing efficient algorithms. These processes also encompass varied length and time scales again posing barriers to efficient simulation. Traditionally, continuum models have been used to simulate electrochemical systems and have been the chief tool for researchers in this field. The behavior of battery systems for example have been sufficiently described by continuum models for the last two decades. Continuum modeling is an attractive tool for battery systems design and optimization studies apart from its ability to predict transport and thermal behavior. In this chapter, a brief review of continuum electrochemical engineering models for lithium-ion batteries is provided. The capabilities and limitations of these models are discussed. Next, a continuum Monte Carlo approach is proposed to characterize the cathode material of lithium-ion batteries.


Continuum Model Cathode Material Monte Carlo Model Battery System Applied Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. S. Newman, Electrochemical Systems, Prentice Hall, Englewood Cliffs, NJ (1991).Google Scholar
  2. 2.
    K. E. Thomas, J. Newman and R. M. Darling, in Advances in Lithium-ion Batteries, Ed. by W. A. van Schalkwijk and B. Scrotsati, Kluwer academic/Plenum publishers, New York, 2002, p. 345.Google Scholar
  3. 3.
    G. G. Botte, V. R. Subramanian, R. E. White, Electrochim. Acta, 45 (2000) 2595.Google Scholar
  4. 4.
    M. Doyle, T. F. Fuller and J. Newman, J. Electrochem. Soc., 140 (1993) 1526.Google Scholar
  5. 5.
    T. F. Fuller, M. Doyle, and J. Newman, J. Electrochem. Soc., 141 (1994) 1.Google Scholar
  6. 6.
    M. Doyle, J. Newman, A. S. Gozdz, C. N. Schmutz, J. M. and Tarascon, J. Electrochem. Soc., 143 (1996) 1890.Google Scholar
  7. 7.
    K. E. Thomas, and J. Newman, J. Electrochem. Soc., 150 (2003) A176.Google Scholar
  8. 8.
    P. Arora, M. Doyle, A. S. Gozdz, R. E. White, and J. Newman, J. Power Sources, 88 (2000) 219.Google Scholar
  9. 9.
    P. Ramadass, B. Haran, W. E. White, and B. N. Popov, J. Power Sources, 123 (2003) 230.Google Scholar
  10. 10.
    P. Ramadass, B. Haran, P. M. Gomadam, W. E. White, and B. N. Popov, J. Electrochem. Soc., 151 (2004) A196.Google Scholar
  11. 11.
    G. Ning, W. E. White, and B. N. Popov, Electrochim. Acta, 51 (2006) 2012.Google Scholar
  12. 12.
    P. M. Gomadam, J. W. Weidner, R. A. Dougal, and R. E. White, J. Power Sources, 110 (2002) 267.Google Scholar
  13. 13.
    S. Santhanagopalan, Q. Guo, P. Ramadass, and R. E. White, J. Power Sources, 156 (2006) 620.Google Scholar
  14. 14.
    D. Aurbach, J. Power Sources, 146 (2005) 71.Google Scholar
  15. 15.
    M. S. Whittingham, Chem. Rev., 104 (2004) 4271.Google Scholar
  16. 16.
    M. Doyle, Thesis, University of California-Berkeley, 1995.Google Scholar
  17. 17.
    P. Arora and Z. Zhang, Chem. Rev., 104 (2004) 4419.Google Scholar
  18. 18.
    V. R. Subramanian, H. J. Ploehn and R. E. White, J. Electrochem. Soc., 147 (2000) 2868Google Scholar
  19. 19.
    V. Srinivasan and J. Newman, J. Electrochem. Soc., 151 A1517 (2004).Google Scholar
  20. 20.
    J. Christensen and J. Newman, J. Electrochem. Soc., 153 (2006) A1019Google Scholar
  21. 21.
    C. Y. Wang, W. B. Gu, and B. Y. Liaw, J. Electrochem. Soc., 145 (1998) 3407Google Scholar
  22. 22.
    V. R. Subramanian, V. D. Diwakar and D. Tapriyal, J. Electrochem. Soc., 152 (2005) A2002Google Scholar
  23. 23.
    P. Arora, R. E. White and M. Doyle, J. Electrochem. Soc., 145 (1998) 3647.Google Scholar
  24. 24.
    P. B. Balbuena and Y. Wang, Lithium-Ion batteries: Solid-Electrolyte Interphase, Imperial College Press, London, 2004Google Scholar
  25. 25.
    M. Doyle, J. P. Meyers and J. Newman, J. Electrochem. Soc., 147 (2000) 99Google Scholar
  26. 26.
    J. P. Meyers, M. Doyle, R. M. Darling, and J. Newman, J. Electrochem. Soc., 147, (2000) 2930Google Scholar
  27. 27.
    V. R. Subramanian, V. Boovaragavan, K. Potukuchi, V. D. Diwakar and A. Guduru, Electrochem. Solid-State Letters, 10 (2007) A25Google Scholar
  28. 28.
    T. D. Hatchard, D. D. Macneil, A. Basu and J. R. Dahn, J. Electrochem. Soc., 148 (2001) A755.Google Scholar
  29. 29.
    Venkat Srinivasan and C.Y. Wang, J. Electrochem. Soc., 150 (2003) A98.Google Scholar
  30. 30.
    K. Mizushima, P. C. Jones, P. C. Wiseman and J. B. Goodenough, Mater. Res. Bull. 15 (1980) 783.Google Scholar
  31. 31.
    A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc., 144 (1997) 1188.Google Scholar
  32. 32.
    N. Ravert, Y. Chouinard, J. F. Magnan, S. Besner, M. Gauthier and M. Armand, J. Power Sources, 97 (2001) 503.Google Scholar
  33. 33.
    Z. Chen and J. R. Dahn, J. Electrochem. Soc., 149 (2002) A1184.Google Scholar
  34. 34.
    H. Huang, S.C.Yin and L.F.Nazar, Electrochem. Solid – State Lett., 4 (2001) A170.Google Scholar
  35. 35.
    F. Croce, A.D’Epifanio, J.Hassoun, A.Deptula, T.Olczac and B. Scrosati, Electrochem. Solid – State Lett., 5 (2002) A47.Google Scholar
  36. 36.
    S. Franger, F. Le Cras, C. Bourbon and H. Rouault, J. Power Sources, 119 (2003) 252.Google Scholar
  37. 37.
    S. Franger, F. Le Cras, C. Bourbon and H. Rouault, Electrochem. Solid – State Lett., 5 (2002) A47.Google Scholar
  38. 38.
    S. Franger, C. Bourbon and F. Le Cras, J. Electrochem. Soc., 151 (2004) A1024.Google Scholar
  39. 39.
    J. Newman, K. E. Thomas, H. Hafezi and D. R. Wheeler, J. Power Sources, 119 (2003) 838.Google Scholar
  40. 40.
    M. W. Verbrugge, D. R. Baker and B. J. Koch, J. Power Sources, 110 (2002) 295.Google Scholar
  41. 41.
    V. R. Subramanian, V. Boovaragavan and V. D. Diwakar, Electrochem. Solid-State Lett., 10 (2007) A255.Google Scholar
  42. 42.
    X.-C. Zhang, W. Shyy, and A. M. Sastry, J. Electrochem. Soc., 154 (2007) A910.Google Scholar
  43. 43.
    W. F. Howard and R. M. Spotnitz, J. Power Sources, 165 (2007) 887.Google Scholar
  44. 44.
    V. Srinivasan and J. Newman, Electrochem. Solid – State Lett., 9 (2006) A110.Google Scholar
  45. 45.
    R. Darling and J. Newman, J. Electrochem. Soc., 146 (1999) 3765.Google Scholar
  46. 46.
    V. Boovaragavan, V. D. Diwakar and V. R. Subramanian, in Advanced materials and methods for Lithium Ion batteries, Ed. by S. S. Zhang, Transworld Research Network, 2007, p. 427.Google Scholar
  47. 47.
    http://www.uscar.org (accessed Jan 2009)

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Vinten D. Diwakar
    • 1
  • S. Harinipriya
    • 2
  • Venkat R. Subramanian
    • 3
  1. 1.Department of Chemical EngineeringTennessee Technological UniversityCookevilleUSA
  2. 2.Department of NanotechnologySRM UniversityChennaiIndia
  3. 3.Department of Energy Environmental & Chemical EngineeringWashington UniversitySaint LouisUSA

Personalised recommendations