Electrocatalytic Reactions of Chemisorbed Aromatic Compounds: Studies by ES, DEMS, STM and EC

  • Jean Sanabria-Chinchilla
  • Youn-Geun Kim
  • Xiaole Chen
  • Ding Li
  • Helmut Baltruschat
  • Manuel P. Soriaga
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 50)


The interaction of organic molecules with, and their subsequent reactivities at, electrode surfaces are among the more critical aspects of modern electrochemical surface science. However, the study of these processes is an exceedingly difficult proposition. In the past, experimental probes were limited to conventional electrochemical techniques. But the information content of these methods is limited to the macroscopic properties of the electrodeelectrolyte interface. Consequently, results from surface studies based merely on ensemble thermodynamic and kinetic measurements can be rationalized only phenomenologically with little basis for interpretations at the molecular level. Over the past few decades, a slew of surface-physics techniques were developed for the study of interfacial processes, and present-day research in surface electrochemistry has taken advantage of such methods. Since it is clear that no single empirical technique can ever hope to unravel all the nuances of heterogeneous reactions, the use of multiple complementary techniques in surface science has become the standard approach. Unfortunately, the surface-characterization methods, while quite powerful, are also rather intricate and quite expensive to implement. As a consequence, less than a handful of (judiciously selected) surface-physics methods have actually been employed in electrochemical research laboratories.


Scan Tunneling Microscopy Anodic Oxidation Auger Electron Spectroscopy Scan Tunneling Microscopy Image Benzene Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Yeager and J. Kuta, in Physical Chemistry: An Advanced Treatise, Vol. IXA, Ed. by H. Eyring, D. Henderson, and W. Jost, Academic Press, New York, 1970.Google Scholar
  2. 2.
    A. J. Bard and L. R. Faulkner, Electrochemical Methods, John Wiley, New York, 1980.Google Scholar
  3. 3.
    R. E. White, J. O’M. Bockris, B. E. Conway, and E. Yeager, Eds, Comprehensive Treatise of Electrochemistry, Vol. VIII, Plenum Press, New York, 1984.Google Scholar
  4. 4.
    B. B. Damaskin, O. A. Petrii, and V. V. Batrakov. Adsorption of Organic Compounds on Electrodes, Plenum Press, New York, 1971.Google Scholar
  5. 5.
    J. L. Stickney, M. P. Soriaga, A. T. Hubbard, and S. E. Anderson, J. Electroanal. Chem. 125 (1981) 73.Google Scholar
  6. 6.
    S. L. Michelhaugh, C. Bhardwaj, G. J. Cali, B. G. Bravo, M.E. Bothwell, G. M. Berry, and M. P. Soriaga, Corrosion. 47 (1991) 322.Google Scholar
  7. 7.
    G. A. Somorjai, Chemistry in Two Dimensions: Surfaces, Cornell University Press, New York, 1981.Google Scholar
  8. 8.
    G. Ertl and J. Kuppers, Low Energy Electrons and Surface Chemistry, VCH Publishers, New York, 1985.Google Scholar
  9. 9.
    D. P. Woodruff and T. A. Delchar, Modern Techniques of Surface Science, Cambridge University Press, New York, 1986.Google Scholar
  10. 10.
    J. T. Yates, Experimental Innovations in Surface Science: A Guide to Practical Laboratory Methods and Instruments, AIP Press, New York, 1997.Google Scholar
  11. 11.
    A. T. Hubbard, Accts. Chem. Res. 13 (1980) 177.Google Scholar
  12. 12.
    P. N. Ross, in Chemistry and Physics of Solid Surfaces, Ed. by R. Vaneslow and R. Howe, Springer-Verlag, New York, 1982.Google Scholar
  13. 13.
    E. Yeager, A. Homa, B. D. Cahan, and D. J. Scherson, Vac. Sci. Technol. 20 (1982) 628.Google Scholar
  14. 14.
    D. M. Z. Kolb, Phys. Chem. N. F.. 154 (1987) 179.Google Scholar
  15. 15.
    M. P. Soriaga, in Structure of Electrified Surfaces, Ed. by J. Lipkowski and P. N. Ross, VCH, New York, 1993.Google Scholar
  16. 16.
    M. P. Soriaga, Prog. Surf. Sci. 39 (1992) 325.Google Scholar
  17. 17.
    W. N. Hansen, D. M. Kolb, and D. W. Lynch, Eds, Electronic and Molecular Structure of Electrode-Electrolyte Interfaces, Elsevier, Amsterdam, 1983.Google Scholar
  18. 18.
    T. E. Furtak, K. L. Kliewer, and D. W. Lynch, Eds, Non-Traditional Approaches to the Study of the Solid-Electrolyte Interface, North-Holland, Amsterdam, 1980.Google Scholar
  19. 19.
    O. Hofman, K. Doblhofer, and H. Gerischer, J. Electroanal. Chem. 161 (1984) 337.Google Scholar
  20. 20.
    M. A. Van Hove, in The Nature of the Surface Chemical Bond, Ed. by T. H. Rhodin and G. Ertl, North-Holland Publishing, New York, 1979.Google Scholar
  21. 21.
    H. Ibach and D. A. Mills, Electron Energy Loss Spectroscopy. Academic Press, New York, 1982.Google Scholar
  22. 22.
    M. P. Soriaga, X. Chen, D. L. Li, and J. L. Stickney, in Applications of Physical Methods to Inorganic and Bioinorganic Chemistry, Ed. by R. A. Scott, Wiley, New York, 2007.Google Scholar
  23. 23.
    G. Binnig and H. Rohrer, Surf. Sci. 157 (1985) L373.Google Scholar
  24. 24.
    M. M. Dvek, M. J. Heben, N. S. Lewis, R. M. Penner, and C. F. Quate, in Electrochemical Surface Science, Ed. by M. P. Soriaga. ACS Books, Washington, 1988.Google Scholar
  25. 25.
    A. A. Gewirth and H. Siegenthaler, Eds, Nanoscale Probes of the Solid-Liquid Interface, Kluwer Academic, London, 1995.Google Scholar
  26. 26.
    K. Itaya, Prog. Surf. Sci. 58 (1998) 121.Google Scholar
  27. 27.
    K. Itaya and E. Tomita, Surf. Sci. 201 (1988) L507.Google Scholar
  28. 28.
    O. Wolter and J. Heitbaum, Ber. Bunsenges. Phys. Chem. 88 (1984) 2.Google Scholar
  29. 29.
    H. Baltruschat, in Interfacial Electrochemistry: Theory, Experiment, and Applications, Ed. by A. Wieckowski, Marcel Dekker, New York, 1999.Google Scholar
  30. 30.
    H. J. Baltruschat, Am. Soc. Mass Spectrom. 15 (2004) 1693.Google Scholar
  31. 31.
    Y.-G. Kim, J. E. Soto, X. Chen, Y.-S. Park, and M. P. Soriaga. J. Electroanal. Chem. 554 (2003) 167.Google Scholar
  32. 32.
    A. F. Lee, K. Wilson, R. M. Lambert, A. Goldoni, A. Baraldi, and G. J. Paolucci, Phys. Chem. B. 104 (2000) 11729.Google Scholar
  33. 33.
    G. D. Waddill and L. L. Kesmodel, Phys. Rev. B. 8 (1985) 4940.Google Scholar
  34. 34.
    L. M. Sverdlow, M. A. Kovner, and E. P. Krainov, Vibrational Spectra of Polyatomic Molecules, Wiley, New York, 1974.Google Scholar
  35. 35.
    T. Hartung, U. Schmiemann, U. Kamphausen, and H. Baltruschat, Anal. Chem. 63 (1991) 44.Google Scholar
  36. 36.
    T. Shimanouchi, Standard Reference Database, NIST, Washington, 1998.Google Scholar
  37. 37.
    L. K. Kesmodel, in Surface Imaging and Visualization, Ed. by A. T. Hubbard, CRC Press, Boca Raton, 1995.Google Scholar
  38. 38.
    M. P. Soriaga, E. Binamira-Soriaga, A. T. Hubbard, J. B. Benziger, and K. W. P. Pang, Inorg. Chem. 24 (1985) 65.Google Scholar
  39. 39.
    K. W. P. Pang, J. B. Benziger, M. P. Soriaga, and A. T. Hubbard, J. Phys. Chem. 88 (1984) 4583.Google Scholar
  40. 40.
    F. R. Hartley, The Chemistry of Platinum and Palladium, Wiley, New York, 1973.Google Scholar
  41. 41.
    U. Belluco, Organometallic and Corodination Chemistry of Platinum, Academic Press, New York, 1974.Google Scholar
  42. 42.
    S.-C. Sanabria, Electrochemical Hydrogenation of Aromatic Compounds at Polycrystalline and Single-Crystal Pd Surfaces, Texas A&M University, College Station, 2006.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jean Sanabria-Chinchilla
    • 1
  • Youn-Geun Kim
    • 1
  • Xiaole Chen
    • 1
  • Ding Li
    • 1
  • Helmut Baltruschat
    • 2
  • Manuel P. Soriaga
    • 1
  1. 1.Department of ChemistryTexas A&M UniversityTXUSA
  2. 2.Institut fur Physikalische und Theoretische ChemieUniversität BonnBonnGermany

Personalised recommendations