Methanol Electro-Oxidation by Meth anol Dehydrogenase Enzymatic Catalysts: A Computational Study

  • N. B. Idupulapati
  • D. S. Mainardi
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 50)


The high-cost of materials and efficiency limitations that chemical fuel cells currently have is a topic of primary concern. For a fuel cell to be effective, strong acidic or alkaline solutions, high temperatures and pressures are needed. Most fuel cells use platinum as catalyst, which is expensive, limited in availability, and easily poisoned by carbon monoxide (CO), a by-product of many hydrogen production reactions in the fuel cell anode chamber. In proton exchange membrane (PEM) fuel cells, the type of fuel used dictates the appropriate type of catalyst needed. Within this context, tolerance to CO is an important issue.


Fuel Cell Proton Transfer Methanol Oxidation Free Energy Barrier Protein Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. M. Markovic, and P. N. Ross, Surf. Sci. Rep., 286 (2002) 1.Google Scholar
  2. 2.
    S. J. C. Cleghorn, X. Ren, T. E. Springer, M. S. Wilson, C. Zawodzinski, T. A. Zawodzinski, and S. Gottesfeld, Int. J. Hydrogen Energy, 22 (1997) 1137.Google Scholar
  3. 3.
    M. Iwase, and S. Kawatsu, presented at the Proc. of the First International Symposium on Proton Conducting Membrane Fuel Cells, 1995 (unpublished).Google Scholar
  4. 4.
    V. Mehta, and J.S. Cooper, J. Power Sources, 114 (2003) 32.Google Scholar
  5. 5.
    J. O. M. Bockris, and S. U. M. Khan, Surface electrochemistry: a molecular level approach, Plenum Press, New York, 1993.Google Scholar
  6. 6.
    T. Rades, V. Y. Borokov, V. B. Kazansky, M. Polisset-Thfoin, and J. Fraissard, J. Phys. Chem., 100 (1996) 16238.Google Scholar
  7. 7.
    M. Fernandez-Garcia, J.A. Anderson, and G.L. Halter, J. Phys. Chem., 100 (1996) 16247.Google Scholar
  8. 8.
    B.C. Beard, and P. N.Jr. Ross, J. Electrochem. Soc., 137 (1990) 3368.Google Scholar
  9. 9.
    N. Neergat, A.K. Shukla, and K. S. Gandhi, J. Appl. Electrochem., 31 (2001) 373.Google Scholar
  10. 10.
    T. Toda, H. Igarashi, and M. Watanabe, J. Electroanal. Chem., 460 (1999) 258.Google Scholar
  11. 11.
    T. Toda, H. Igarashi, H. Uchida, and M. Watanabe, J. Electrochem. Soc., 146 (1999) 3750.Google Scholar
  12. 12.
    S-P Huang, D. S. Mainardi, and P.B. Balbuena, Surf. Sci., 545 (2003) 163.Google Scholar
  13. 13.
    M. Koper, J. Electroanal. Chem., 450 (1998) 189.Google Scholar
  14. 14.
    V. Stamenkovic, N. M. Markovic, and P. N. Ross, J. Electroanal. Chem., 500 (2001) 44.Google Scholar
  15. 15.
    N.M. Markovic, H. A. Gasteiger, B. N. Grgur, and P. N. Ross, J. Electroanal. Chem., 467 (1999) 157.Google Scholar
  16. 16.
    S-P Huang, and P. B. Balbuena, Mol. Phys., 100 (2002) 2165.Google Scholar
  17. 17.
    S-P Huang, and P. B. Balbuena, J. Phys. Chem. B, 106 (2002) 7225.Google Scholar
  18. 18.
    N. Combe, P. Jensen, and A. Pimpinelli, Phys. Rev. Lett., 85 (2000) 110.Google Scholar
  19. 19.
    M. Heinebrodt, N. Malinowski, F. Tast, W. Branz, I. M. l. Billas, and T. P. Martin, J. Chem. Phys., 110 (1999) 9915.Google Scholar
  20. 20.
    G. Faubert, R. Cote, and J.P. Dodelet, presented at the Proc. for the Second International Symposium on the Proton Conducting Membrane Fuel Cells, 1998 (unpublished).Google Scholar
  21. 21.
    T. Abe, and M. Kaneko, Prog. Polym. Sci., 28 (2003) 1441.Google Scholar
  22. 22.
    A.A. Karyakin, S.V. Morozov, E.E. Karyakina, Varfolomeyev S.D., N.A. Zorin, and S. Cosnier, Electrochem. Comm., 4 (2002) 417.Google Scholar
  23. 23.
    A. Heller, Phys. Chem. Chem. Phys., 6 (2004) 209.Google Scholar
  24. 24.
    L. de la Garza, G. Jeong, P. Liddell, T. Sotomura, T.A. Moore, A. L. Moore, and D. Gust, J. Phys. Chem. B, 107 (2003) 10252.Google Scholar
  25. 25.
    A. Heller, J. Phys.Chem, 6 (2004) 209.Google Scholar
  26. 26.
    M. Stredansky A. Pizzarielo, and S. Miertus, Journal of Bioelectrochemistry, 56 (2002) 99.Google Scholar
  27. 27.
    N. Mano H. H. Kim, Y.Zhang, and A.Heller, Journal of Electrochemical Society, 150 (2003) 209.Google Scholar
  28. 28.
    X.C. Zhang, A. Ranta, and A. Halme, Journal of Biosensors and Bioelectronics, 21 (2006) 2052.Google Scholar
  29. 29.
    A. Pizzarielo, M. Stredansky, and S. Miertus, Bioelectrochemistry, 56 (2002) 99.Google Scholar
  30. 30.
    H.H. Kim, N. Mano, Y. Zhang, and A. Heller, J. Electrochem. Soc., 150 (2003) A209.Google Scholar
  31. 31.
    X-C. Zhang, A. Ranta, and A. Halme, Biosensors and Bioelectronics (2006) 2052.Google Scholar
  32. 32.
    X.C. Zhang, A. Ranta, and A. Halme, presented at the Proceedings 204th Meeting of The Electrochemical Society, 2003 (unpublished).Google Scholar
  33. 33.
    C. Anthony, Methanol Dehydrogenase, a PQQ-Containing Quinoprotein Dehydrogenase, Kluwer Academic/ Plenum Publishers, New York., 2000.Google Scholar
  34. 34.
    C. Anthony, and P. Williams, Biochimica. Biophysica. Acta, 1647 (2003) 18.Google Scholar
  35. 35.
    Z. X. Xia, W. W. Dai, J. P. Xiong, Z. P. Hao, V. L. Davidson, S. White, and F. S. Mathews, J. Biol. chem., 267 (1992) 22289.Google Scholar
  36. 36.
    Z. X. Xia, Y. N. He, W. W. Dai, S. White, G. Boyd, and F. S. Mathews, Biochem J., 38 (1999) 1214.Google Scholar
  37. 37.
    M. Ghosh, C. Anthony, K. Harlas, M. G. Goodwin, and C. C. F. Blake, Struc. (London), 3 (1995) 1771.Google Scholar
  38. 38.
    P.R. Afolabi, K. Amaratunga, O. Majekodunmi, S. L. Dales, R. Gill, D. Thompson, J. B. Cooper, S. P. Wood, P. M. Goodwin, and C. Anthony, Biochem J., 40 (2001) 9799.Google Scholar
  39. 39.
    S. White, G. Boyd, F. S. Mathews, Z. X. Xia, W. W. Dai, Y. S. Zhang, and V. L. Davidson, J. Biochem, 32 (1993) 12955.Google Scholar
  40. 40.
    J. Frank, S.H. van Krimpen, P.E.J.Verwiel, J.A. Jongejan, and A.C. Mulder, Eur. J. Biochem, 184 (1989) 187.Google Scholar
  41. 41.
    A.J.J. Olsthoorn, and J.A. Duine, Biochem J., 37 (1998) 13854.Google Scholar
  42. 42.
    J. Frank, M. Dijkstra, J.A. Duine, and C. Balny, Eur. J. Biochem, 174 (1988) 331.Google Scholar
  43. 43.
    S. Itoh, H. Kawakami, and S. Fukuzumi, J. Biochem., 37 (1998) 6562.Google Scholar
  44. 44.
    S. Itoh, H. Kawakami, and S. Fukuzumi, J. Mol. Cat. B, 8 (2000) 85.Google Scholar
  45. 45.
    Y. J. Zheng, and T. C.Bruice, Proc. Nat. Aca. Sci., 94 (1996) 11881.Google Scholar
  46. 46.
    Z. X. Xia, Y. N. He, W. W. Dai, S. White, G. Boyd, and F. S. Mathews, J. Mol. Biol., 259 (1996) 480.Google Scholar
  47. 47.
    S. Y. Reddy, and T. C.Bruice, J. Am. Chem. Soc., 125 (2003) 8141.Google Scholar
  48. 48.
    S. Y. Reddy, F. S. Mathews, Y. J. Zheng, and T. C. Bruice, J. Mol. Struc., 655 (2003) 269.Google Scholar
  49. 49.
    B. Mennenga C. W. M. Kay, H. Gorisch, and R. Bittl, J. Am. Chem. Soc, 127 (2005) 7974.Google Scholar
  50. 50.
    M. G. Goodwin, and C. Anthony, Biochem J., 318 (1996) 673.Google Scholar
  51. 51.
    M. Leopoldini, N. Russo, and M. Toscano, Chem. Euro. j, 13 (2007) 2109.Google Scholar
  52. 52.
    J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, phys. Rev. B, 46 (1992) 6671.Google Scholar
  53. 53.
    R. M. Dreialer, and E. K. U. Gross, Density Functional Theory: An Approach to Quantum Many Body Problem, Springer, Berlin, 1990.Google Scholar
  54. 54.
    Accelrys, Materials Studio (2006).Google Scholar
  55. 55.
    C. Lee, W. Yang, and R. Parr, phys. Rev. B, 37 (1998) 786.Google Scholar
  56. 56.
    Accelrys Inc., DMOL3 User Guide (San Diego, 2003).Google Scholar
  57. 57.
    W. Koch, and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory, Wiley-CVH, 2001.Google Scholar
  58. 58.
    N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith, and J. Andzelm, Comp. Mat. Science, 28 (2003) 250.Google Scholar
  59. 59.
    M.E Grillo, N. Govind, G. Fitzgerald, and K.B. Stark, Lect. Notes Phys., 642 (2004) 202.Google Scholar
  60. 60.
    K. H. Hopmann, and F. Himo, Chem. Eur. J., 12 (2006) 6898.Google Scholar
  61. 61.
    K. H. Hopmann, and F. Himo, J. Chem. Theory Comput., 4 (2008) 1129.Google Scholar
  62. 62.
    L. Noodleman, T. Lovell, W. Han, J. Li, and F. Himo, Chem. Rev., 104 (2004) 459.Google Scholar
  63. 63.
    P. Velichkova, and F. Himo, J. Phys.Chem. B, 110 (2006) 16.Google Scholar
  64. 64.
    R. Sevastik, and F. Himo, Bioorg. Chem., 35 (2007) 444.Google Scholar
  65. 65.
    R. Zhen Liao, J. Yu, F. M. Raushel, and F. Himo, Chem. Eur. J., 14 (2008) 4287.Google Scholar
  66. 66.
    N. B. Idupulapati, and D. S. Mainardi, Mol. Sim., 34 (2008) 1057.Google Scholar
  67. 67.
    G. Scalmani M. Cossi, N. Rega,V. Barone, J. Chem. Phys, 43 (2002) 117.Google Scholar
  68. 68.
    B. Mennucci R. Cammi., J. Tomasi, J. Phys.Chem, 103 (1999) 9100.Google Scholar
  69. 69.
    B. Mennucci R. Cammi., J. Tomasi, J. Phys.Chem A, 104 (2000) 5631.Google Scholar
  70. 70.
    N. B. Idupulapati, and D. S. Mainardi, J. Mol. Stru: TheoChem (Accepted for publication) (Jan 2009).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • N. B. Idupulapati
    • 1
  • D. S. Mainardi
    • 1
  1. 1.Institute for Micromanufacturing, Chemical Engineering ProgramLouisiana Tech UniversityRustonUSA

Personalised recommendations