Molecular-Level Modeling of the Structure and Proton Transport within the Membrane Electrode Assembly of Hydrogen Proton Exchange Membrane Fuel Cells

  • Myvizhi Esai Selvan
  • David J. Keffer
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 50)


The creation of proton exchange membrane fuel cells (PEMFCs) in the early 1960’s attracted great interest with the prospect of serving as a highly efficient and eco-friendly power source. This nascent technology found a broad range of applications spanning from spacecrafts to automobiles and electronic devices. The PEMFC in its simplest form consists of an anode, where the hydrogen fuel is catalytically electro-oxidized (dissociated into protons and electrons), a cathode, where oxygen is catalytically electro-reduced (combined with protons to form water) and a polymer electrolyte membrane, which serves as the structural framework of the cell and transports protons from anode to cathode, while the electrons are forced through the external circuit generating electricity. Today, fuel cell remains one of the most promising means of generating energy from alternative fuels, with tremendous potential to reduce oil dependence and carbon emissions. However, current PEMFCs have a relatively narrow operational range and a high cost of production, thus requiring significant experimental and theoretical research to develop a thorough understanding of this technology (at both the molecular and macroscopic scale), which will ultimately render the fuel cell as an economically viable option.


Root Mean Square Polymer Electrolyte Bulk Water Pair Correlation Function Proton Exchange Membrane Fuel Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Eikerling, A. A. Kornyshev, and A. R. Kucernak, Phys. Today 59 (2006) 38.Google Scholar
  2. 2.
    M. V. Williams, H. R. Kunz, and J. M. Fenton, J. Power Sources 135 (2004) 122.Google Scholar
  3. 3.
    C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, and A. B. Bocarsly, J. Power Sources 103 (2001) 1.Google Scholar
  4. 4.
    R. K. A. M. Mallant, J. Power Sources 118 (2003) 424.Google Scholar
  5. 5.
    K. A. Mauritz and R. B. Moore, Chem. Rev. 104 (2004) 4535.Google Scholar
  6. 6.
    R. Souzy and B. Ameduri, Prog. Polym. Sci. 30 (2005) 644.Google Scholar
  7. 7.
    L. H. Hristov, S. J. Paddison, and R. Paul, J. Phys. Chem. B 112 (2008) 2937.Google Scholar
  8. 8.
    S. T. Cui, J. W. Liu, M. Esai Selvan, S. J. Paddison, D. J. Keffer, and B. J. Edwards, J. Phys. Chem. B 112 (2008) 13273.Google Scholar
  9. 9.
    K. D. Kreuer, J. Membr. Sci. 185 (2001) 29.Google Scholar
  10. 10.
    S. S. Jang, V. Molinero, T. Cagin, and W. A. Goddard, J. Phys. Chem. B 108 (2004) 3149.Google Scholar
  11. 11.
    S. Urata, J. Irisawa, A. Takada, W. Shinoda, S. Tsuzuki, and M. Mikami, J. Phys. Chem. B 109 (2005) 4269.Google Scholar
  12. 12.
    S. T. Cui, J. W. Liu, M. Esai Selvan, D. J. Keffer, B. J. Edwards, and W. V. Steele, J. Phys. Chem. B 111 (2007) 2208.Google Scholar
  13. 13.
    M. Fujimura, T. Hashimoto, and H. Kawai, Macromolecules 14 (1981) 1309.Google Scholar
  14. 14.
    R. Devanathan, A. Venkatnathan, and M. Dupuis, J. Phys. Chem. B 111 (2007) 8069.Google Scholar
  15. 15.
    A. Paciaroni, M. Casciola, E. Cornicchi, M. Marconi, G. Onori, M. Pica, and R. Narducci, J. Phys. Chem. B 110 (2006) 13769.Google Scholar
  16. 16.
    N. Agmon, Chem. Phys. Lett. 244 (1995) 456.Google Scholar
  17. 17.
    M. Tuckerman, K. Laasonen, M. Sprik, and M. Parrinello, J. Chem. Phys. 103 (1995) 150.Google Scholar
  18. 18.
    G. G. Scherer, Solid State Ionics 94 (1997) 249.Google Scholar
  19. 19.
    E. A. Ticianelli, C. R. Derouin, A. Redondo, and S. Srinivasan, J. Electrochem. Soc. 135 (1988) 2209.Google Scholar
  20. 20.
    M. S. Wilson and S. Gottesfeld, J. Appl. Electrochem. 22 (1992) 1.Google Scholar
  21. 21.
    E. Antolini, L. Giorgi, A. Pozio, and E. Passalacqua, J. Power Sources 77 (1999) 136.Google Scholar
  22. 22.
    M. Esai Selvan, J. Liu, D. J. Keffer, S. Cui, B. J. Edwards, and W. V. Steele, J. Phys. Chem. C 112 (2008) 1975.Google Scholar
  23. 23.
    J. W. Liu, M. Esai Selvan, S. Cui, B. J. Edwards, D. J. Keffer, and W. V. Steele, J. Phys. Chem. C 112 (2008) 1985.Google Scholar
  24. 24.
    J. W. Liu, S. T. Cui, and D. J. Keffer, Fuel Cells 8 (2008) 422.Google Scholar
  25. 25.
    T. D. Gierke, G. E. Munn, and F. C. Wilson, J. Polym. Sci., Polym. Phys. 19 (1981) 1687.Google Scholar
  26. 26.
    M. Chomakovahaefke, R. Nyffengger, and E. Schmidt, Appl. Phys. A 59 (1994) 151.Google Scholar
  27. 27.
    A. Gruger, A. Regis, T. Schmatko, and P. Colomban, Vib. Spectrosc. 26 (2001) 215.Google Scholar
  28. 28.
    M. Falk, Can. J. Chem. 58 (1980) 1495.Google Scholar
  29. 29.
    A. Y. Nosaka and Y. Nosaka, J. Power Sources 180 (2008) 733.Google Scholar
  30. 30.
    A. Lehmani, S. Durand-Vidal, and P. Turq, J. Appl. Polym. Sci. 68 (1998) 503.Google Scholar
  31. 31.
    P. J. James, J. A. Elliott, T. J. McMaster, J. M. Newton, A. M. S. Elliott, S. Hanna, and M. J. Miles, J. Mater. Sci. 35 (2000) 5111.Google Scholar
  32. 32.
    J. Park, S. E. Moon, E. K. Kim, H. R. Lee, and K. H. Park, IEEE Sens. J. (2006) 1261.Google Scholar
  33. 33.
    W. Y. Hsu and T. D. Gierke, J. Membr. Sci. 13 (1983) 307.Google Scholar
  34. 34.
    D. J. Yarusso and S. L. Cooper, Macromolecules 16 (1983) 1871.Google Scholar
  35. 35.
    A. Vishnyakov and A. V. Neimark, J. Phys. Chem. B 105 (2001) 9586.Google Scholar
  36. 36.
    E. Spohr, P. Commer, and A. A. Kornyshev, J. Phys. Chem. B 106 (2002) 10560.Google Scholar
  37. 37.
    R. Devanathan, A. Venkatnathan, and M. Dupuis, J. Phys. Chem. B 111 (2007) 13006.Google Scholar
  38. 38.
    M. K. Petersen and G. A. Voth, J. Phys. Chem. B 110 (2006) 18594.Google Scholar
  39. 39.
    D. A. Mologin, P. G. Khalatur, and A. R. Kholhlov, Macromol. Theory Simul. 11 (2002) 587.Google Scholar
  40. 40.
    S. Yamamoto and S. A. Hyodo, Polym. J. 35 (2003) 519.Google Scholar
  41. 41.
    J. A. Elliott and S. J. Paddison, Phys. Chem. Chem. Phys. 9 (2007) 2602.Google Scholar
  42. 42.
    M. Eikerling, A. A. Kornyshev, and E. Spohr, in Proton-Conducting Polymer Electrolyte Membranes: Water and Structure in Charge, Vol. 215, Ed. by G. G. Scherer, Springer, Heidelberg, 2008, p. 15.Google Scholar
  43. 43.
    E. J. Lamas and P. B. Balbuena, Electrochim. Acta 51 (2006) 5904.Google Scholar
  44. 44.
    W. Goddard, B. Merinov, A. Van Duin, T. Jacob, M. Blanco, V. Molinero, S. S. Jang, and Y. H. Jang, Mol. Simul. 32 (2006) 251.Google Scholar
  45. 45.
    R. O’Hayre and F. B. Prinz, J. Electrochem. Soc. 151 (2004) A756.Google Scholar
  46. 46.
    A. Parthasarathy, B. Dave, S. Srinivasan, A. J. Appleby, and C. R. Martin, J. Electrochem. Soc. 139 (1992) 1634.Google Scholar
  47. 47.
    D. Chu, Electrochim. Acta 43 (1998) 3711.Google Scholar
  48. 48.
    H. Ogasawara, B. Brena, D. Nordlund, M. Nyberg, A. Pelmenschikov, L. G. M. Pettersson, and A. Nilsson, Phys. Rev. Lett. 89 (2002).Google Scholar
  49. 49.
    M. Nagasaka, H. Kondoh, K. Amemiya, T. Ohta, and Y. Iwasawa, Phys. Rev. Lett. 100 (2008).Google Scholar
  50. 50.
    M. Doi and S. J. Edwards, The Theory of Polymer Dynamics, Oxford University Press, Oxford, 1986.Google Scholar
  51. 51.
    O. Markovitch, H. Chen, S. Izvekov, F. Paesani, G. A. Voth, and N. Agmon, J. Phys. Chem. B 112 (2008) 9456.Google Scholar
  52. 52.
    S. T. Cui, J. I. Siepmann, H. D. Cochran, and P. T. Cummings, Fluid Phase Equilib. 146 (1998) 51.Google Scholar
  53. 53.
    H. C. Li, C. McCabe, S. T. Cui, P. T. Cummings, and H. D. Cochran, Mol. Phys. 101 (2003) 2157.Google Scholar
  54. 54.
    S. P. Gejji, K. Hermansson, and J. Lindgren, J. Phys. Chem. 97 (1993) 3712.Google Scholar
  55. 55.
    W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Nerz Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc. 117 (1995) 5179.Google Scholar
  56. 56.
    D. Rivin, G. Meermeier, N. S. Schneider, A. Vishnyakov, and A. V. Neimark, J. Phys. Chem. B (2004) 8900.Google Scholar
  57. 57.
    W. L. Jorgensen, J. J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79 (1983) 926.Google Scholar
  58. 58.
    E. Neria, S. Fischer, and M. Karplus, J. Chem. Phys. 105 (1996) 1902.Google Scholar
  59. 59.
    G. Hummer, D. M. Soumpasis, and M. Neumann, Mol. Phys. 77 (1992) 769.Google Scholar
  60. 60.
    D. R. Morris and X. Sun, J. Appl. Polym. Sci. 50 (1993) 1445.Google Scholar
  61. 61.
    G. W. Wu and K. Y. Chan, J. Electroanal. Chem. 450 (1998) 225.Google Scholar
  62. 62.
    S. Y. Liem and K. Y. Chan, Surf. Sci. 328 (1995) 119.Google Scholar
  63. 63.
    S. Picaud, P. N. M. Hoang, S. Hamad, J. A. Mejias, and S. Lago, J. Phys. Chem. B 108 (2004) 5410.Google Scholar
  64. 64.
    S. J. A. Koh, H. P. Lee, C. Lu, and Q. H. Cheng, Phys. Rev. B 72 (2005).Google Scholar
  65. 65.
    S. Nosé, Mol. Phys. 52 (1984) 255.Google Scholar
  66. 66.
    S. Nosé, J. Chem. Phys. 81 (1984) 511.Google Scholar
  67. 67.
    W. G. Hoover, Phys. Rev. A 31 (1985) 1695.Google Scholar
  68. 68.
    M. Tuckerman, B. J. Berne, and G. J. Martyna, J. Chem. Phys. 97 (1992) 1990.Google Scholar
  69. 69.
    S. J. Paddison and K. S. Promislow, Device and Materials Modeling in PEM Fuel Cells, Springer, New York, 2008.Google Scholar
  70. 70.
    K. D. Kreuer, M. Schuster, B. Obliers, O. Diat, U. Traub, A. Fuchs, U. Klock, S. J. Paddison, and J. Maier, J. Power Sources 178 (2008) 499.Google Scholar
  71. 71.
    A. Venkatnathan, R. Devanathan, and M. Dupuis, J. Phys. Chem. B 111 (2007) 7234.Google Scholar
  72. 72.
    K. D. Kreuer, Solid State Ionics 97 (1997) 1.Google Scholar
  73. 73.
    Y. Chen, G. L. Aranovich, and M. D. Donohue, J. Colloid Interface Sci. 307 (2007) 34.Google Scholar
  74. 74.
    J. Rossmeisl, J. K. Norskov, C. D. Taylor, M. J. Janik, and M. Neurock, J. Phys. Chem. B 110 (2006) 21833.Google Scholar
  75. 75.
    C. Raduge, V. Pflumio, and Y. R. Shen, Chem. Phys. Lett. 274 (1997) 140.Google Scholar
  76. 76.
    P. B. Miranda and Y. R. Shen, J. Phys. Chem. B 103 (1999) 3292.Google Scholar
  77. 77.
    M. K. Petersen, S. S. Iyengar, T. J. F. Day, and G. A. Voth, J. Phys. Chem. B 108 (2004) 14804.Google Scholar
  78. 78.
    P. B. Petersen and R. J. Saykally, J. Phys. Chem. B 109 (2005) 7976.Google Scholar
  79. 79.
    Q. Chen and K. Schmidt-Rohr, Macromol. Chem. Phys. 208 (2007) 2189.Google Scholar
  80. 80.
    Y. Miura and H. Yoshida, Thermochim. Acta 163 (1990) 161.Google Scholar
  81. 81.
    Q. Chen and K. Schmidt-Rohr, Macromolecules 37 (2004) 5995.Google Scholar
  82. 82.
    D. Brandell, J. Karo, A. Liivat, and J. O. Thomas, J. Mol. Model. 13 (2007) 1039.Google Scholar
  83. 83.
    D. E. Moilanen, N. E. Levinger, D. B. Spry, and M. D. Fayer, J. Am. Chem. Soc. 129 (2007) 14311.Google Scholar
  84. 84.
    K. Malek, M. Eikerling, Q. P. Wang, Z. S. Liu, S. Otsuka, K. Akizuki, and M. Abe, J. Chem. Phys. 129 (2008).Google Scholar
  85. 85.
    H. R. Zelsmann, M. Pineri, M. Thomas, and M. Escoubes, J. Appl. Polym. Sci. 41 (1990) 1673.Google Scholar
  86. 86.
    G. Suresh, Y. M. Scindia, A. K. Pandey, and A. Goswami, J. Membr. Sci. 250 (2005) 39.Google Scholar
  87. 87.
    T. A. Zawodzinski, M. Neeman, L. O. Sillerud, and S. Gottesfeld, J. Phys. Chem. 95 (1991) 6040.Google Scholar
  88. 88.
    J. C. Perrin, S. Lyonnard, and F. Volino, J. Phys. Chem. C 111 (2007) 3393.Google Scholar
  89. 89.
    A. M. Pivovar and B. S. Pivovar, J. Phys. Chem. B 109 (2005) 785.Google Scholar
  90. 90.
    J. A. Elliott, S. Hanna, A. M. S. Elliott, and G. E. Cooley, Phys. Chem. Chem. Phys. 1 (1999) 4855.Google Scholar
  91. 91.
    J. J. Fontanella, M. C. Wintersgill, R. S. Chen, Y. Wu, and S. G. Greenbaum, Electrochim. Acta 40 (1995) 2321.Google Scholar
  92. 92.
    R. O’Hayre, M. Lee, and F. B. Prinz, J. Appl. Phys. 95 (2004) 8382.Google Scholar
  93. 93.
    R. A. Robinson and R. H. Stokes, Electrolyte Solutions, Butterworths, London, 1959.Google Scholar
  94. 94.
    J. H. Choi, H. J. Lee, and S. H. Moon, J. Colloid Interface Sci. 238 (2001) 188.Google Scholar
  95. 95.
    E. Huckel, Z. Elektrochem. Angew. Phys. Chem. 34 (1928) 546.Google Scholar
  96. 96.
    J. D. Bernal and R. H. Fowler, J. Chem. Phys. 1 (1933) 515.Google Scholar
  97. 97.
    M. Eigen, Angew. Chem.-Int. Edit. 3 (1964) 1.Google Scholar
  98. 98.
    X. C. Huang, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 122 (2005) 044308.Google Scholar
  99. 99.
    L. Ojamäe, I. Shavitt, and S. J. Singer, J. Chem. Phys. 109 (1998) 5547.Google Scholar
  100. 100.
    D. Seeliger, C. Hartnig, and E. Spohr, Electrochim. Acta 50 (2005) 4234.Google Scholar
  101. 101.
    M. K. Petersen, F. Wang, N. P. Blake, H. Metiu, and G. A. Voth, J. Phys. Chem. B 109 (2005) 3727.Google Scholar
  102. 102.
    S. Dokmaisrijan and E. Spohr, J. Mol. Liq. 129 (2006) 92.Google Scholar
  103. 103.
    S. J. Paddison, J. New Mater. Electrochem. Syst. 4 (2001) 197.Google Scholar
  104. 104.
    S. J. Paddison, R. Paul, and T. A. Zawodzinski, J. Chem. Phys. 115 (2001) 7753.Google Scholar
  105. 105.
    M. Eikerling, A. A. Kornyshev, A. M. Kuznetsov, J. Ulstrup, and S. Walbran, J. Phys. Chem. B 105 (2001) 3646.Google Scholar
  106. 106.
    N. P. Blake, G. Mills, and H. Metiu, J. Phys. Chem. B 111 (2007) 2490.Google Scholar
  107. 107.
    R. Car and M. Parrinello, Phys. Rev. Lett. 55 (1985) 2471.Google Scholar
  108. 108.
    S. R. Billeter and W. F. Van Gunsteren, J. Phys. Chem. A 102 (1998) 4669.Google Scholar
  109. 109.
    P. Intharathep, A. Tongraar, and K. Sagarik, J. Comput. Chem. 27 (2006) 1723.Google Scholar
  110. 110.
    A. Warshel and R. M. Weiss, J. Am. Chem. Soc. 102 (1980) 6218.Google Scholar
  111. 111.
    U. W. Schmitt and G. A. Voth, J. Chem. Phys. 111 (1999) 9361.Google Scholar
  112. 112.
    Y. J. Wu, H. N. Chen, F. Wang, F. Paesani, and G. A. Voth, J. Phys. Chem. B 112 (2008) 467.Google Scholar
  113. 113.
    F. Wang and G. A. Voth, J. Chem. Phys. 122 (2005) 144105Google Scholar
  114. 114.
    R. G. Schmidt and J. Brickmann, Ber. Bunsen-Ges. Phys. Chem. Chem. Phys. 101 (1997) 1816.Google Scholar
  115. 115.
    M. A. Lill and V. Helms, J. Chem. Phys. 115 (2001) 7993.Google Scholar
  116. 116.
    S. Meiboom, J. Chem. Phys. 34 (1961) 375.Google Scholar
  117. 117.
    H. Lapid, N. Agmon, M. K. Petersen, and G. A. Voth, J. Chem. Phys. 122 (2005).Google Scholar
  118. 118.
    S. Walbran and A. A. Kornyshev, J. Chem. Phys. 114 (2001) 10039.Google Scholar
  119. 119.
    B. Halle and G. Karlstrom, J. Chem. Soc., Faraday Trans. II 79 (1983) 1031.Google Scholar
  120. 120.
    R. Pfeifer and H. G. Hertz, Ber. Bunsen-Ges. Phys. Chem. Chem. Phys. 94 (1990) 1349.Google Scholar
  121. 121.
    S. W. Rabideau and H. G. Hecht, J. Chem. Phys. 47 (1967) 544.Google Scholar
  122. 122.
    A. Loewenstein and A. Szoke, J. Am. Chem. Soc. 84 (1962) 1151.Google Scholar
  123. 123.
    Z. Luz and S. Meiboom, J. Am. Chem. Soc. 86 (1964) 4768.Google Scholar
  124. 124.
    H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, and J. Hermans, Intermolecular Forces, D. Reidel, Dordrecht, 1981.Google Scholar
  125. 125.
    M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 112 (2000) 8910.Google Scholar
  126. 126.
    S. L. Fornili, M. Migliore, and M. A. Palazzo, Chem. Phys. Lett. 125 (1986) 419.Google Scholar
  127. 127.
    D. E. Sagnella and G. A. Voth, Biophys. J. 70 (1996) 2043.Google Scholar
  128. 128.
    I. Kusaka, Z. G. Wang, and J. H. Seinfeld, J. Chem. Phys. 108 (1998) 6829.Google Scholar
  129. 129.
    D. Marx, M. E. Tuckerman, J. Hutter, and M. Parrinello, Nature 397 (1999) 601.Google Scholar
  130. 130.
    S. Woutersen and H. J. Bakker, Phys. Rev. Lett. 96 (2006).Google Scholar
  131. 131.
    S. Izvekov and G. A. Voth, J. Chem. Phys. 123 (2005).Google Scholar
  132. 132.
    M. Tuckerman, K. Laasonen, M. Sprik, and M. Parinello, J. Phys. Chem. 99 (1995) 5749.Google Scholar
  133. 133.
    G. S. Kell, J. Chem. Eng. Data 20 (1975) 97.Google Scholar
  134. 134.
    W. H. Press, W. T. Vetterling, S. A. Teukolsky, and B. P. Flannery, Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd ed., Cambridge University Press, Cambridge, 1992.Google Scholar
  135. 135.
    R. E. Glick and K. C. Tewari, J. Chem. Phys. 44 (1966) 546.Google Scholar
  136. 136.
    N. Agmon, Isr. J. Chem. 39 (1999) 493.Google Scholar
  137. 137.
    B. D. Cornish and R. J. Speedy, J. Phys. Chem. 88 (1984) 1888.Google Scholar
  138. 138.
    M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 114 (2001) 363.Google Scholar
  139. 139.
    S. J. Paddison and J. A. Elliott, J. Phys. Chem. A 109 (2005) 7583.Google Scholar
  140. 140.
    G. Brancato and M. E. Tuckerman, J. Chem. Phys. 122 (2005) 224507.Google Scholar
  141. 141.
    H. A. Stern and B. J. Berne, J. Chem. Phys. 115 (2001) 7622.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Myvizhi Esai Selvan
    • 1
  • David J. Keffer
    • 1
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of TennesseeKnoxvilleUSA

Personalised recommendations