Advertisement

Recent Advances in Theoretical Aspects of Electrocatalysis

  • Elizabeth Santos
  • Wolfgang Schmickler
Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 50)

Abstract

Although electrochemistry has much in common with surface science, the application of the principles of catalytic activity to the reactions taking place in an electrochemical environment is not straightforward. All electrochemical reactions of practical interest imply at least one step where an electron is transferred between species coming from the solution side or the electrode surface. Therefore electrochemical reactions occurring at the interfaces are governed by the interaction of the reactant both with the solvent and with the electrode. There is also an additional effect produced by the external applied potential, so that the Fermi level of the reactant can be easily tuned relative to the Fermi level of the electrode.

Keywords

Fermi Level Density Functional Theory Calculation Theoretical Aspect Hydrogen Oxidation Reaction Outer Sphere Electron Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    S. Trasatti, J. Electroanal. Chem. 39 (1972) 163.Google Scholar
  2. 2.
    S. Trasatti, Adv. Electrochem. Electrochem. Eng. and Electrochemical Engineering, Ed. by H. Gerischer and C.W. Tobias, Wiley, New York, Vol. 10, 1977 p. 213.Google Scholar
  3. 3.
    J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 152 (2005) J23.Google Scholar
  4. 4.
    B. E. Conway, E. M. Beatty, P. A. D. De Maine, Electrochim. Acta 7 (1962) 39.Google Scholar
  5. 5.
    P. Sabatier. Ber. Dtsch. Chem. Ges. 44 (1984) 1911.Google Scholar
  6. 6.
    J. Horiuti and M. Polanyi, Acta Physicochim. USSR 2 (1935) 505; H. Gerischer, Z. Phys. Chem. 8 (1956) 137.Google Scholar
  7. 7.
    R. Parsons, Trans .Farad. Soc. 94 (1958) 1059.Google Scholar
  8. 8.
    L. Krishtalik, Elektrokhimiya 2 (1966) 616.Google Scholar
  9. 9.
    W. Schmickler and S. Trasatti, J. Electrochem. Soc. 153 (2006) L31.Google Scholar
  10. 10.
    R. A. Marcus, J. Chem. Phys. 24 (1965) 966.Google Scholar
  11. 11.
    N. S. Hush, J. Chem. Phys. 28 (1958) 962.Google Scholar
  12. 12.
    W. Kohnand L. J. Sham, Phys. Rev. 140 (1965) A1133.Google Scholar
  13. 13.
    J. Perdew and A. Zunger, Phys. Rev. B 23 (1981) 5048.Google Scholar
  14. 14.
    R. G. Parr and W. Yang, in Density Functional Theory of Atoms and Molecules Oxford U. Press, NewYork, 1989.Google Scholar
  15. 15.
    E.Santos, M. T. M. Koper, W. Schmickler, Chem. Phys. Lett. 419 (2006) 421.Google Scholar
  16. 16.
    E.Santos, M. T. M. Koper, W. Schmickler, Chem. Phys. 344 (2008) 195.Google Scholar
  17. 17.
    T. Iwasita,W. Schmickler, J.W. Schultze, Ber. Bunsen-Ges. 89 (1985) 138.Google Scholar
  18. 18.
    E. Santos, T, Iwasita, W. Vielstich, Electrochim. Acta 31 (1986) 431.Google Scholar
  19. 19.
    V.G. Levich, in Kinetics of Reactions with Charge Transfer, in Physical Chemistry, an Advanced Treatise, Vol. Xb, ed. by H. Eyring, D. Henderson, and W. Jost, Academic Press, New York, 1970.Google Scholar
  20. 20.
    A. Groß, in Theoretical Surface Science – a microscopic perspective, Springer, Berlin, 2002.Google Scholar
  21. 21.
    A. Groß, in Adsorption at nanostructured surfaces, Chapter 89 of Handbook of Theoretical and Computational Nanotechnology, eds. Michael Rieth and Wolfram Schommers, American Scientific Publishers, 2006.Google Scholar
  22. 22.
    R.A. van Santen, M. Neurock, in Molecular heterogeneous catalysis, Wiley-VCH, Weinheim. 2006.Google Scholar
  23. 23.
    B. Hammer and J. K. Nørskov, Adv. Catal. 45 (2000) 71.Google Scholar
  24. 24.
    K. Fukui, Science 218 (1982) 747.Google Scholar
  25. 25.
    E.D. German, A.M. Kuznetsov, J. Phys. Chem. 98 (1994) 6120.Google Scholar
  26. 26.
    J.M. Savéant, J. Am. Chem. Soc. 109 (1987) 6788.Google Scholar
  27. 27.
    J.M. Savéant, Acc. Chem. Res. 26 (1993) 455.Google Scholar
  28. 28.
    M.T.M. Koper, G.A. Voth, Chem. Phys. Lett. 282 (1998) 100.Google Scholar
  29. 29.
    A. Calhoun, M.T.M. Koper, G.A. Voth, J. Phys. Chem. B 103 (1999) 3442.Google Scholar
  30. 30.
    A.M. Kuznetsov, I.G. Medvedev, J. Ulstrup, Electrochem. Commun. 2 (2000) 135.Google Scholar
  31. 31.
    D.R. Hartree, Proc. Cambridge Philos. Soc. 24 (1928) 328.Google Scholar
  32. 32.
    V. A. Fock, Z. Phys. 15 (1930) 126.Google Scholar
  33. 33.
    A.M. Kuznetsov, I.G. Medvedev, Russ. J. Electrochem. 39 (2003) 1107; I.G. Medvedev, Russ. J. Electrochem. 39 (2003) 39.Google Scholar
  34. 34.
    P.W. Anderson, Phys. Rev. 124 (1961) 41.Google Scholar
  35. 35.
    N. Kawakami, A. Akiji, J. Phys. Chem. Jpn. 51 (1982) 1143.Google Scholar
  36. 36.
    A.M. Kuznetsov, I.G. Medvedev, Electrochem. Commun. 9 (2007) 1624.Google Scholar
  37. 37.
    Y. Gohda, S. Schnur and A. Groß, Faraday Discuss. 140 (2009) 203.Google Scholar
  38. 38.
    S.G. Davison, K.W. Sulston, in Green Function Theory of Chemisorption, Springer-Verlag, London, in press.Google Scholar
  39. 39.
    D.M. Newns, Phys. Rev. 178 (1969) 1123.Google Scholar
  40. 40.
    W. Schmickler Electrochim Acta 21 (1976) 161.Google Scholar
  41. 41.
    W. Schmickler, J. Electroanal. Chem. 204 (1986) 31.Google Scholar
  42. 42.
    W. Schmickler, Chem. Phys. Lett. 237 (1995) 152.Google Scholar
  43. 43.
    E. Santos and W. Schmickler, ChemPhysChem 7 (2006) 2282.Google Scholar
  44. 44.
    E. Santos and W. Schmickler, Chem.Phys. 332 (2007) 39.Google Scholar
  45. 45.
    E. Santos and W. Schmickler, Electrochim Acta 53 (2008) 6149.Google Scholar
  46. 46.
    J. C. Slater, in Quantum Theory of Molecules and Solids, Addison-Wesley, Reading, Mass. 1972.Google Scholar
  47. 47.
    M. Wolfsberg and L. Helmholz, J. Chem. Phys. 20 (1952) 837.Google Scholar
  48. 48.
    Schmickler W. in Interfacial Electrochemistry, New York, Oxford University Press, 1996.Google Scholar
  49. 49.
    E. Santos and W. Schmickler, Angew. Chem. Int. Ed. 46 (2007) 8262.Google Scholar
  50. 50.
    J. Clavilier, R. Faure, G. Guinet, R. Durand, J. Electroanal. Chem. 107 (1980) 205.Google Scholar
  51. 51.
    D. Eberhard, E. Santos, W. Schmickler, J. Electroanal. Chem. 461 (1999) 76.Google Scholar
  52. 52.
    D. Eberhard, in Ph.D. thesis, University of Ulm, 1999.Google Scholar
  53. 53.
    E.Santos, K. Pötting and W.Schmickler. Faraday Discussions 140 (2008) 209.Google Scholar
  54. 54.
    E. Santos, A. Lundin, K. Pötting, P. Quaino and W. Schmickler. J. Solid State Electrochemistry 13 (2009) 1101, DOI: 10.1007/s10008-008-0702-4. (on line).Google Scholar
  55. 55.
    E. Santos, A. Lundin, K. Pötting, P. Quaino and W. Schmickler Physical Review B 79 (2009) 235436.Google Scholar
  56. 56.
    See e.g. S. Pandelov, and U. Stimming, Electrochim. Acta 52 (2007) 5548, and references therein.Google Scholar
  57. 57.
    F. Hernandez and H. Baltruschat, J. Solid State Electrochem. 11 (2007) 877.Google Scholar
  58. 58.
    H. Baltruschat, R. Bußar, S. Ernst and F. Hernandez, in: In-situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis Paul A. Christensen, Andrzej Wieckowski and Shi-Gang Sun (eds), Elsevier, 2007.Google Scholar
  59. 59.
    R.R. Adzic, A.V. Tripkovic, and V.B. Vessovic, J. Electroanal. Chem. 204 (1986) 329.Google Scholar
  60. 60.
    G. Garcia and M.T.M. Koper, Phys. Chem. Chem. Phys. 10 (2008) 3802.Google Scholar
  61. 61.
    E. Santos, P. Quaino, G. Soldano, and W. Schmickler, Electrochem. Comm. 11 (2009) 1764.Google Scholar
  62. 62.
    E. Leiva, P. Vélez, C. Sanchez, and W. Schmickler, Phys. Rev. B 74 (2006) 035422.Google Scholar
  63. 63.
    J.K. Norskov et al., J. Phys. Chem. B 108 (2004) 17886.Google Scholar
  64. 64.
    P. Vassilev and M.T.M. Koper, J. Phys. Chem. C 111 (2007) 2607.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Elizabeth Santos
    • 1
  • Wolfgang Schmickler
    • 2
  1. 1.Institute of Theoretical ChemistryUlm UniversityUlmGermany
  2. 2.Facultad de Matemática, Astronomía y Física, IFEG – CONICETUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations