Advertisement

Electrochemical Micromachining and Microstructuring of Aluminum and Anodic Alumina

  • Dmitri A. Brevnov
  • Peter Mardilovich
Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 48)

Abstract

At a time when natural recourses are getting scarce and the impact of human civilization on the environment is increasing, the cost and abundance of raw materials have to be considered in every industry. Since the discovery of the electrolytic production of aluminum in the late nineteenth century, Al has been employed for manufacturing a variety of products ranging from household appliances to airplanes. The electrometallurgical production of Al consumes a large amount of electrical energy and is associated with hazardous emissions. Nevertheless, Al remains widely used in industry due to its abundance on our planet, durability, and useful electrical, gravimetric, thermal, and mechanical properties.

Keywords

Anodic Alumina Current Density Distribution Selective Etching Mask Design Porous Al2O3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Dmitri A. Brevnov is thankful to Prof. Harry O. Finklea (West Virginia University, Morgantown, WV, USA) and Prof. Plamen Atanassov (University of New Mexico (UNM), Albuquerque, NM, USA) for their mentoring. The financial support for Dr. Brevnov’s research at UNM was provided in part by Intel Corp. (Santa Clara, CA, USA), funded through Center for Micro-Engineered Materials (UNM). Peter Mardilovich thanks Dr. Alexander Govyadinov (Hewlett-Packard Company, Corvallis, OR, USA) for helpful discussions on the history of development of multilevel alumina ceramics in the National Academy of Sciences of Belarus in 1970s–1980s.

References

  1. 1.
    F. Keller, M. S. Hunter, and D. L. Robinson, J. Electrochem. Soc. 100 (1953) 411.CrossRefGoogle Scholar
  2. 2.
    J. W. Diggle, T. G. Downie, and C. W. Goulding, Chem. Rev. 69 (1969) 365.CrossRefGoogle Scholar
  3. 3.
    A. Despic and V. Parkhutik, in Modern Aspects of Electrochemistry, Vol. 20, Ed. by J. O’M. Bockris, R. E. White, and B. E. Conway, Plenum Press, New York (1989) 401.Google Scholar
  4. 4.
    H. Takahashi, M. Sakairi, and T. Kikuchi, in Modern Aspects of Electrochemistry, Vol. 46, Ed. by S.-I. Pyun and J.-W. Lee, Springer, New York (2009) 59.Google Scholar
  5. 5.
    S. Krongelb, L. T. Romankiw, E. D. Perfecto, and K. H. Wong, in Microelectronic Packaging, Ed. by M. Datta, T. Osaka, and J. M. Schultze, CRC Press, Boca Raton (2005) 337.Google Scholar
  6. 6.
    P. P. Mardilovich, A. N. Govyadinov, V. V. Kozharinov, and R. Paterson, in Advances in Science and Technology. Ceramics: Charting the Future, Ed. by P. Vincenzini, Techna, Florence, Italy (1995) 2763.Google Scholar
  7. 7.
    P. Mardilovich, D. Routkevitch, and A. Govyadinov, in Microfabricated Systems and MEMS V, Proceedings by Electrochemical Society, 2000–19, Ed. P. J. Hesketh et al. (2000) 33.Google Scholar
  8. 8.
    D. Routkevitch, A. Govyadinov, and P. Mardilovich, in Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Nov. 5–10, 2000, Orlando, Florida, Vol. 2, ASME, New York (2000) 39.Google Scholar
  9. 9.
    S. Tan, M. Reed, H. Han, and R. Boudreau, in Proceedings of IEEE MEMS’95 (1995) 267.Google Scholar
  10. 10.
    A.-P. Li, F. Müller, A. Birner, K. Nelsh, and U. Gösele, Adv. Mater. 11 (1999) 483.CrossRefGoogle Scholar
  11. 11.
    M. J. Madou, Fundamentals of Micromachining: The Science of Miniaturization, 2nd edition, CRC Press, Boca Raton (2002) 519.Google Scholar
  12. 12.
    R. Alkire and H. Deligianni, J. Electrochem. Soc. 135 (1988) 1093.CrossRefGoogle Scholar
  13. 13.
    M. Datta and L. T. Romankiw, J. Electrochem. Soc. 136 (1989) 285C.CrossRefGoogle Scholar
  14. 14.
    A. C. West, C. Madore, M. Matlosz, and D. Landolt, J. Electrochem. Soc. 139 (1992) 499.CrossRefGoogle Scholar
  15. 15.
    M. Datta, R. V. Shenoy, and L. T. Romankiw, J. Eng. Ind. 118 (1996) 29.CrossRefGoogle Scholar
  16. 16.
    R. V. Shenoy, M. Datta, and L. T. Romankiw, J. Electrochem. Soc. 143 (1996) 2305.CrossRefGoogle Scholar
  17. 17.
    M. Datta, IBM J. Res. Dev. 42 (1998) 655.CrossRefGoogle Scholar
  18. 18.
    C. Madore, O. Piotrowski, and D. Landolt, J. Electrochem. Soc. 146 (1999) 2526.CrossRefGoogle Scholar
  19. 19.
    Y. Ferri, O. Piotrowski, P.-F. Chauvy, C. Madore, and D. Landolt, J. Micromech. Microeng. 11 (2001) 522.CrossRefGoogle Scholar
  20. 20.
    O. Zinger, P.-F. Chauvy, and D. Landolt, J. Electrochem. Soc. 150 (2003) B495.CrossRefGoogle Scholar
  21. 21.
    D. Landolt, P.-F. Chauvy, and O. Zinger, Electrochim. Acta 48 (2003) 3185.CrossRefGoogle Scholar
  22. 22.
    P.-F. Chauvy and D. Landolt, J. Appl. Electrochem. 33 (2003) 135.CrossRefGoogle Scholar
  23. 23.
    J. J. Kelly and C. H. de Minjer, J. Electrochem. Soc. 122 (1975) 931.CrossRefGoogle Scholar
  24. 24.
    P. E. Riley, J. Electrochem. Soc. 140 (1993) 1518.CrossRefGoogle Scholar
  25. 25.
    W. E. Frank, Microelectron. Eng. 33 (1997) 85.CrossRefGoogle Scholar
  26. 26.
    G. C. Schwartz and V. J. Platter, J. Electrochem. Soc. 122 (1975) 1508.CrossRefGoogle Scholar
  27. 27.
    S. Lazarouk, I. Baranov, G. Maiello, E. Proverbio, G. Decesare, and A. Ferrari, Electrochem. Soc. 141 (1994) 2556.CrossRefGoogle Scholar
  28. 28.
    S. Lazarouk, S. Katsouba, A. Demainaovich, V. Stanovski, S. Viotech, V. Vysotski, and V. Ponomar, Solid-State Electron. 44 (2000) 815.CrossRefGoogle Scholar
  29. 29.
    S. Lazarouk, S. Katsouba, A. Leshok, A. Demainaovich, V. Stanovski, S. Viotech, V. Vysotski, and V. Ponomar, Microelectron. Eng. 50 (2000) 321.CrossRefGoogle Scholar
  30. 30.
    P. Mardilovich, A. Govyadinov, and D. Routkevitch, in Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Nov. 5–10, 2000, Orlando, Florida, Vol. 2, ASME, New York (2000) 45.Google Scholar
  31. 31.
    D. A. Brevnov, T. C. Gamble, P. Atanassov, G. P. López, T. M. Bauer, Z. A. Chaudhury, C. D. Schwappach, and L. E. Mosley, Electrochem. Solid-State Lett. 9 (2006) B35.CrossRefGoogle Scholar
  32. 32.
    J. T. Cosse, G. P. López, P. Atanassov, T. M. Bauer, Z. A. Chaudhury, C. D. Schwappach, L. E. Mosley, and D. A. Brevnov, J. Micromech. Microeng. 17 (2007) 89.CrossRefGoogle Scholar
  33. 33.
    J. P. O’Sullivan and G. C. Wood, Proc. R. Soc. Lond. A. 317 (1970) 511.CrossRefGoogle Scholar
  34. 34.
    V. P. Parkhutik and V. I. Shershulsky, J. Phys. D: Appl. Phys. 25 (1992) 1258.CrossRefGoogle Scholar
  35. 35.
    F. Li, L. Zhang and R. M. Metzger, Chem. Mater. 10 (1998) 2470.CrossRefGoogle Scholar
  36. 36.
    J. E. Houser and K. R. Hebert, J. Electrochem. Soc. 153 (2006) B566.CrossRefGoogle Scholar
  37. 37.
    H.-H. Strehblow, C. M. Melliar-Smith, and W. M. Augustyniak, J. Electrochem. Soc. 125 (1978) 915.CrossRefGoogle Scholar
  38. 38.
    R. L. Chiu, P. H. Chang, and C. H. Tung, J. Electrochem. Soc. 142 (1995) 525.CrossRefGoogle Scholar
  39. 39.
    H. Habazaki, K. Shimizu, P. Skeldon, G. E. Thompson, G. C. Wood, and X. Zhou, Trans. Ins. Met. Finish. 75 (1997) 18.Google Scholar
  40. 40.
    T. Kikuchi, M. Sakairi, H. Takahashi, Y. Abe, and N. Katayama, J. Electrochem. Soc. 148 (2001) C740.CrossRefGoogle Scholar
  41. 41.
    T. A. Renshaw, J. Electrochem. Soc. 108 (1961) 185.CrossRefGoogle Scholar
  42. 42.
    J. O. Dukovic, in Advances in Electrochemical Science and Engineering, Vol. 3, Ed. by H. Gerischer and C. W. Tobias, VCH Publishers Inc., New York, NY (1994) 117.Google Scholar
  43. 43.
    A. C. West, M. Matlosz, and D. Landolt, J. Electrochem. Soc. 138 (1991) 728.CrossRefGoogle Scholar
  44. 44.
    S. Mehdizadeh, J. O. Dukovic, P. C. Andricacos, L. T. Romankiw, and H. Y. Cheh, J. Electrochem. Soc. 139 (1992) 78.CrossRefGoogle Scholar
  45. 45.
    C. Madore and D. Landolt, J. Micromech. Microeng. 7 (1997) 270.CrossRefGoogle Scholar
  46. 46.
    G. C. Schwartz and V. J. Platter, J. Electrochem. Soc. 123 (1976) 34.CrossRefGoogle Scholar
  47. 47.
    D. A. Brevnov, T. C. Gamble, P. Atanassov, and L. E. Mosley, J. Electrochem. Soc. 153 (2006) C801.CrossRefGoogle Scholar
  48. 48.
    R. Akolkar, U. Landau, H. Kuo, and Y.-M. Wang J. Appl. Electrochem. 34 (2004) 807.CrossRefGoogle Scholar
  49. 49.
    A. J. Learn, J. Electrochem. Soc. 123 (1976) 894.CrossRefGoogle Scholar
  50. 50.
    D. R. Collins, S. R. Shortes, W. R. McMahon, R. C. Bracken, and T. C. Penn, J. Electrochem. Soc. 120 (1973) 521.CrossRefGoogle Scholar
  51. 51.
    V. Labunov, V. Sokol, V. Parkun, and A. Vorob’yova, Process for Making Multilevel Interconnectors of Electronic Components, U.S. Patent 5,580,825 (1996).Google Scholar
  52. 52.
    V. Surganov, A. Mozalev, and V. Boksha, Microelectron. Eng. 37–38 (1997) 335.CrossRefGoogle Scholar
  53. 53.
    A. I. Vorob’eva, V. A. Sokol, and V. M. Parkun, Russ. Microelectron. 3 (2003) 136 translated from Mikroelectronika 32 (2003) 177.Google Scholar
  54. 54.
    R. M. Swanson, S. K. Beckwith, R. A. Crane, W. D. Eaides, Y. H. Kwark, R. A. Sinton, and S. E. Swirhun, IEEE Trans. Electron Devices 31 (1984) 661.CrossRefGoogle Scholar
  55. 55.
    P. Verlinden, R. M. Swanson, R. A. Sinton, and D. E. Kane, in IEEE Photovoltaic Specialists Conference, Vol. 1, IEEE, Las Vegas, NV (1988) 532.Google Scholar
  56. 56.
    V. Surganov, IEEE Trans. Compon. Packag. Manuf. Technol. – Part B Adv. Packag. 17 (1994) 197.Google Scholar
  57. 57.
    S. D. Wijeyesekera, J. Jing, D. C. Benson, and T. Sasagawa, Thin Film Capacitors, U.S. Patent 6,404,615 B1 (2002).Google Scholar
  58. 58.
    X. Zhao, P. Jiang, S. Xie, L. Liu, W. Zhou, Y. Gao, L. Song, J. Wang, D. Liu, X. Dou, S. Luo, Z. Zhang, Y. Xiang, and G. Wanga, J. Electrochem. Soc. 152 (2005) B411.CrossRefGoogle Scholar
  59. 59.
    P. P. Mardilovich, A. N. Govyadinov, N. I. Mukhurov, A. M. Rzhevskii, and R. Paterson, J. Memb. Sci. 98 (1995) 131.CrossRefGoogle Scholar
  60. 60.
    K. Itaya, S. Sugavara, K. Arai, and S. Saito, J. Chem. Eng. Jpn. 17 (1984) 514.CrossRefGoogle Scholar
  61. 61.
    M. Mehmood, A. Rauf, M. A. Rasheed, S. Saeed, J. I. Akhter, J. Ahmad, and M. Aslam, Mater. Chem. Phys. 104 (2007) 306.CrossRefGoogle Scholar
  62. 62.
    R. Paterson et al. Permeable Anodic Alumina Film. PCT, GB 95/01646, WO 96/01684 (1996).Google Scholar
  63. 63.
    H. L. Lira and R. Paterson, J. Memb. Sci. 206 (2002) 375.CrossRefGoogle Scholar
  64. 64.
    J. H. Yuan, W. Chen, R. J. Hui, Y. L. Hu, and X. H. Xia, Electrochim. Acta 51 (2006) 4589.CrossRefGoogle Scholar
  65. 65.
    W. Chen, J. S. Wu, J. H. Yuan, X. H. Xia, and X. H. Lin, J. Electroanal. Chem. 600 (2007) 257.CrossRefGoogle Scholar
  66. 66.
    I. W. M. Brown, M. E. Bowden, T. Kemmitt, and K. J. D. MacKenzie, Curr. Appl. Phys. 6 (2006) 557.CrossRefGoogle Scholar
  67. 67.
    A. Kiechner, K. J. D. MacKenzie, I. W. M. Brown, T. Kemmitt, and M. E. Bowden, J. Memb. Sci. 287 (2007) 264.CrossRefGoogle Scholar
  68. 68.
    R. Ozao, M. Ochiai, H. Yoshida, Y. Ichimura, and T. Inada, J. Therm. Anal. Calorim. 64 (2001) 923.CrossRefGoogle Scholar
  69. 69.
    A. Govyadinov, P. Mardilovich, and D. Routkevitch, in Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Nov. 5–10, 2000, Orlando, Florida, Vol. 2, ASME, New York (2000) 313.Google Scholar
  70. 70.
    A. N. Govyadinov, I. L. Grigorishin, and P. P. Mardilovich, in Proceedings of the 7th Conference of ITG Committee 5.7 “Vacuum Electronics and Displays”, 2–3 May 1995, Garmisch-Partenkirchen, Germany, ITG-Fachbericht, VDE, Verlag, 132 (1995) 161.Google Scholar
  71. 71.
    D. Routkevitch, A. Govyadinov, P. Mardilovich, S. Hooker, and K. Novogradecz, in Proceedings of the 198th Meeting of the Electrochemical Society, 22–27 October 2000, Phoenix, AZ, Abstract 1115 (2000).Google Scholar
  72. 72.
    D. Routkevitch et al., Nanostructured Ceramic Platform for Micromachined Devices and Device Arrays, U.S. Patent 6,705,152 (2004).Google Scholar
  73. 73.
    T. Yadav et al., Semiconductor and Device Nanotechnology and Methods for their Manufacture, U.S. Patent 6,946,197 (2004).Google Scholar
  74. 74.
    P. Mardilovich, A. Govyadinov, and D. Routkevitch, in Proceedings of the 198th Meeting of the Electrochemical Society, 22–27 October 2000, Phoenix, AZ, Abstract 1116 (2000).Google Scholar
  75. 75.
    I. L. Grigorishin, I. F. Kotova, and N. I. Mukhurov, Appl. Surf. Sci. 111 (1997) 101.CrossRefGoogle Scholar
  76. 76.
    N. I. Mukhurov, in Proceedings of Electronics and Radiophysics of Ultra-High Frequencies, 24–28 May 1999, IEEE, St. Petersburg, Russia (1999) 323.Google Scholar
  77. 77.
    I. L. Grigorishin, N. I. Mukhurov, O. M. Surmach, and I. F. Kotova, in Proceedings of the 7th International Vacuum Microelectronics Conference (IVMC’94), 4–7 July 1994, Revue “Le Vide, les Couches Minces”, Grenoble, France, Suppl. No. 271 (1994) 304.Google Scholar
  78. 78.
    I. L. Grigorishin, G. I. Efremov, N. I. Mukhurov, and P. E. Protas, in Proceedings of the 7th International Vacuum Microelectronics Conference (IVMC’94), 4–7 July 1994, Revue “Le Vide, les Couches Minces”, Grenoble, France, Suppl. No. 271 (1994) 308.Google Scholar
  79. 79.
    I. L. Grigorishin, N. I. Mukhurov, and I. F. Kotova, in Proceedings of the 7th Conference of ITG Committee 5.7 “Vacuum Electronics and Displays”, 2–3 May 1995, Garmisch-Partenkirchen, Germany, ITG-Fachbericht, VDE, Verlag 132 (1995) 167.Google Scholar
  80. 80.
    I. L. Grigorishin, N. I. Mukhurov, and I. F. Kotova, in Technical Digest of the 9th International Vacuum Microelectronics Conference, 7–12 July 1996, St. Petersburg, Russia (1996) 589.Google Scholar
  81. 81.
    I. L. Grigorishin, N. I. Mukhurov, and G. I. Efremov, in Technical Digest of the 9th International Vacuum Microelectronics Conference, 7–12 July 1996, St. Petersburg, Russia (1995) 593.Google Scholar
  82. 82.
    G. I. Efremov and N. I. Mukhurov, in Electronics, Circuits and Systems, Proceedings of ICECS’99, The 6th IEEE International Conference 2 (1999) 1047.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Dmitri A. Brevnov
    • 1
  • Peter Mardilovich
    • 2
  1. 1.Applied Materials Inc.Santa ClaraUSA
  2. 2.Hewlett-Packard CompanyCorvallisUSA

Personalised recommendations