Advertisement

The Effect of Morphology of Activated Electrodes on Their Electrochemical Activity

  • Konstantin I. Popov
  • Predrag M. Živković
  • Nebojša D. Nikolić
Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 48)

Abstract

The noble metals or their oxides are the most convenient substrates for most electrochemical reactions taking place in fuel cells or in industrial electrolysis, for example. Because of this, the “activated” electrodes are introduced, consisting of a conducting, inert support coated with a thin layer of electrocatalyst. In this way, not only the chemical nature of the electrode can be modified but also its morphology and structure in dependence on the procedure of preparation.

Keywords

Polarization Curve Diffusion Layer Graphite Electrode Dendritic Growth Exchange Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work was supported by the Ministry of Science and Technological Development of the Republic of Serbia under the research projects: “Deposition of ultrafine powders of metals and alloys and nanostructured surfaces by electrochemical techniques” (No. 142032G) and “Modification of metal and nonmetal materials by electroconductive polymer for application in new technologies” (No. 142044).

References

  1. 1.
    S. Trasatti, “Electrocatalysis in Water Electrolysis“, Book of Abstracts, 1st Regional Symposium on Electrochemistry of South-East Europe, Rovinj, Croatia (2008) 1.Google Scholar
  2. 2.
    Y. Takasu, T. Kawaguchi, W. Sugimoto, and Y. Murakami, Electrochim. Acta 48 (2003) 3861.CrossRefGoogle Scholar
  3. 3.
    Y. Takasu, N. Ohashi, X. -G. Zhang, Y. Murakami, H. Minagawa, S. Sato, and K. Yahikozawa, Electrochim. Acta 41 (1996) 2595.CrossRefGoogle Scholar
  4. 4.
    N. Pron’kin, O. A. Petrii, G. A. Tsirlina, and D. J. Schiffrin, J. Electroanal. Chem. 480 (2000) 112.CrossRefGoogle Scholar
  5. 5.
    L. Nzoghe-Mendome, A. Aloufy, J. Ebothe, M. El Messiry, and D. Hui, J. Cryst. Growth 311 (2009) 1206.CrossRefGoogle Scholar
  6. 6.
    J. O’M. Bockris, A. K. N. Reddy, and M. Gamboa-Aldeco, Modern Electrochemistry 2 A, 2nd edition, Kluwer/Plenum, New York (2000) 1361.Google Scholar
  7. 7.
    K. I. Popov, P. M. Živković, and B. N. Grgur, Electrochim. Acta 52 (2007) 4696.CrossRefGoogle Scholar
  8. 8.
    K. I. Popov, N. D. Nikolić, P. M. Živković, and G. Branković, Electrochim. Acta 55 (2010) 1919.CrossRefGoogle Scholar
  9. 9.
    K. I. Popov, P. M. Živković, S. B. Krstić, and N. D. Nikolić, Electrochim. Acta 54 (2009) 2924.CrossRefGoogle Scholar
  10. 10.
    C. A. Marozzi and A. C. Chialvo, Electrochim. Acta 45 (2000) 2111.CrossRefGoogle Scholar
  11. 11.
    J. L. Barton and J. O’M. Bockris, Proc. R. Soc. A 268 (1962) 485.CrossRefGoogle Scholar
  12. 12.
    J. W. Diggle, A. R. Despić, and J. O’M Bockris, J. Electrochem. Soc. 116 (1969) 1503.CrossRefGoogle Scholar
  13. 13.
    A. R. Despić, J. W. Diggle, and J. O’M Bockris, J. Electrochem. Soc. 116 (1969) 507.CrossRefGoogle Scholar
  14. 14.
    J. O’M. Bockris and A. K. N. Reddy, Modern Electrochemistry 2 B, 2nd edition, Kluwer/Plenum, New York (2000) 1811.Google Scholar
  15. 15.
    B. Scharifker and G. Hills, Electrochim. Acta 28 (1983) 879.CrossRefGoogle Scholar
  16. 16.
    E. Gilleadi, Electrode Kinetics, VCH Publishers, New York (1993) 443.Google Scholar
  17. 17.
    P. Stonehart and D. Wheeler, “Phosphoric Acid Fuel Cells (PAFCs) for vehicles; Electrocatalyst Crystalite Design, Carbon Support, and Matrix Materials Challenges“ in Modern Aspects of Electrochemistry, Vol. 38, Ed. by B. E. Conway, Kluwer/Plenum, New York (2005) Chapter 4, 385.Google Scholar
  18. 18.
    J. O’M. Bockris, A. K. N. Reddy, and M. Gamboa-Aldeco, Modern Electrochemistry 2 A, 2nd edition, Kluwer/Plenum, New York (2000) 1248.Google Scholar
  19. 19.
    K. I. Popov, S. S. Djokić, and B.N. Grgur, Fundamental Aspects of Electrometallurgy, Kluwer/Plenum, New York (2002) Chapter, 14.Google Scholar
  20. 20.
    K. I. Popov, N. V. Krstajić, and M. I. Čekerevac, “The Mechanism of Formation of Coarse and Disperse Electrodeposits“ in Ed. by R. E. White, B. E. Conway, and J. O’M. Bockris, Modern Aspects of Electrochemistry, Vol. 30, Plenum, New York (1996) Chapter ??, 262.Google Scholar
  21. 21.
    K. I. Popov, M. D. Maksimović, J. D. Trnjavčev, and M. G. Pavlović, J. Appl. Electrochem. 11 (1981) 239.CrossRefGoogle Scholar
  22. 22.
    J. S. Newman, Electrochemical Systems, Prentice-Hall, Engelwood Cliffs, NJ (1973) 177.Google Scholar
  23. 23.
    M. N. Dešić, M. M. Popović, M. D. Obradović, Lj. M. Vračar, and B. N. Grgur, J. Serb. Chem. Soc. 70 (2005) 231.CrossRefGoogle Scholar
  24. 24.
    P. M. Živković, B. N. Grgur, and K. I. Popov, J. Serb. Chem. Soc. 73 (2008) 227.CrossRefGoogle Scholar
  25. 25.
    J. O’M. Bockris, A. K. N. Reddy, and M. Gamboa-Aldeco, Modern Electrochemistry 2 A, 2nd edition, Kluwer/Plenum, New York (2000) 1107.Google Scholar
  26. 26.
    K. I. Popov, S. S. Djokić, and B.N. Grgur, Fundamental Aspects of Electrometallurgy, Kluwer/Plenum, New York (2002) Chapter ??, 87, 88.Google Scholar
  27. 27.
    P. B. Price and D. A. Vermilyea, J. Chem. Phys. 28 (1958) 720.CrossRefGoogle Scholar
  28. 28.
    W. Lorenz, Z. Electrochem. 58 (1954) 912.Google Scholar
  29. 29.
    B. E. Mattsson and J. O’M. Bockris, Trans. Faraday Soc. 55 (1959) 1586.CrossRefGoogle Scholar
  30. 30.
    K. I. Popov, S. S. Djokić, and B.N. Grgur, Fundamental Aspects of Electrometallurgy, Kluwer/Plenum, New York (2002) Chapter ??, 56.Google Scholar
  31. 31.
    K. I. Popov, V. Radmilović, B. N. Grgur, and M. G. Pavlović, J. Serb. Chem. Soc. 59 (1994) 47.Google Scholar
  32. 32.
    K. I. Popov, N. V. Krstajić, S. R. Popov, and M. I. Čekerevac, J. Appl. Electrochem. 16 (1986) 771.CrossRefGoogle Scholar
  33. 33.
    K. I. Popov and N. V. Krstajić, J. Appl. Electrochem. 13 (1983) 775.CrossRefGoogle Scholar
  34. 34.
    K. I. Popov, N. V. Krstajić, and S. R. Popov, J. Appl. Electrochem. 15 (1985) 151.CrossRefGoogle Scholar
  35. 35.
    I. Markov, A. Boynov, and S. Toshev, Electrochim. Acta 18 (1973) 377.CrossRefGoogle Scholar
  36. 36.
    S. Štrbac, Z. Rakočević, K. I. Popov, M. G. Pavlović, and R. Petrović, J. Serb. Chem. Soc. 64 (1999) 483.Google Scholar
  37. 37.
    A. Dimitrov, S. Hadži-Jordanov, K. I. Popov, and M. G. Pavlović, J. Appl. Electrochem. 28 (1998) 791.CrossRefGoogle Scholar
  38. 38.
    V. Radmilović, K. I. Popov, M. G. Pavlović, A. Dimitrov, and S. Hadži-Jordanov, J. Solid State Electrochem. 2 (1998) 162.CrossRefGoogle Scholar
  39. 39.
    K. I. Popov, B. N. Grgur, E. R. Stoiljković, M. G. Pavlović, and N. D. Nikolić, J. Serb. Chem. Soc. 62 (1997) 433.Google Scholar
  40. 40.
    G. D. Adžić, A. R. Despić, and D. M. Dražić, J. Electroanal. Chem. 220 (1988) 169.Google Scholar
  41. 41.
    G. D. Adžić, A. R. Despić, and D. M. Dražić, J. Electroanal. Chem. 241 (1988) 353.CrossRefGoogle Scholar
  42. 42.
    N. Ya. Kovarskii and T. A. Arzhanova, Elektrokhimiya 22 (1986) 452.Google Scholar
  43. 43.
    M. L. Avramov Ivić, S. D. Petrović, P. M. Živković, N. D. Nikolić, and K. I. Popov, J. Electroanal. Chem. 549 (2003) 129.CrossRefGoogle Scholar
  44. 44.
    K. I. Popov, M. G. Pavlović, Lj. J. Pavlović, M. I. Čekerevac, and G. Ž. Remović, Surf. Coat. Technol. 34 (1988) 355.CrossRefGoogle Scholar
  45. 45.
    K. I. Popov, N. V. Krstajić, Z. D. Jerotijević, and S. P. Marinković, Surf. Technol. 26 (1985) 185.CrossRefGoogle Scholar
  46. 46.
    K. J. Vetter, Electrochemical kinetics, Khimiya, Moskva, 1967, p. 699, Section 162 C, and references therein (in Russian).Google Scholar
  47. 47.
    K. I. Popov, N. V. Krstajić, and S. R. Popov, Surf. Technol. 20 (1983) 203.CrossRefGoogle Scholar
  48. 48.
    K. I. Popov, S. S. Djokić, and B.N. Grgur, Fundamental Aspects of Electrometallurgy, Kluwer/Plenum, New York (2002) Chapter ??, 78.Google Scholar
  49. 49.
    G. Wranglen, Electrochim. Acta 2 (1960) 130.CrossRefGoogle Scholar
  50. 50.
    A. R. Despić and K. I. Popov, “Transport controlled Deposition and Dissolution of Metals“, in Ed. by B. E. Conway and J. O’M. Bockris, Modern Aspects of Electrochemistry, Vol. 7, Plenum, New York (1972) Chapter 4, 241.Google Scholar
  51. 51.
    I. N. Justinijanović and A. R. Despić, Electrochim. Acta 18 (1973) 709.CrossRefGoogle Scholar
  52. 52.
    K. I. Popov, M. I. Čekerevac, and Lj. M. Nikolić, Surf. Coat. Technol. 34 (1988) 219.CrossRefGoogle Scholar
  53. 53.
    K. I. Popov and M. I. Čekerevac, Surf. Coat. Technol. 37 (1989) 435.CrossRefGoogle Scholar
  54. 54.
    I. M. Epstein, Elektrokhimiya 2 (1966) 734.Google Scholar
  55. 55.
    K. I. Popov, N. V. Krstajić, and M. I. Čekerevac, “The Mechanism of Formation of Coarse and Disperse Electrodeposits“ in Ed. by R. E. White, B. E. Conway, and J. O’M. Bockris, Modern Aspects of Electrochemistry, Vol. 30, Plenum, New York (1996) Chapter ??, 294.Google Scholar
  56. 56.
    K. I. Popov, N. V. Krstajić, and M. I. Čekerevac, “The Mechanism of Formation of Coarse and Disperse Electrodeposits“ in Ed. by R. E. White, B. E. Conway, and J. O’M. Bockris, Modern Aspects of Electrochemistry, Vol. 30, Plenum, New York (1996) Chapter ??, 308.Google Scholar
  57. 57.
    S. Meibhur, E. Yeager, A. Kozawa, and F. Hovorka, J. Electrochem. Soc. 110 (1963) 190.CrossRefGoogle Scholar
  58. 58.
    K. I. Popov, M. G. Pavlović, E. R. Stojilković, and Z. Ž. Stevanović, Hydrometallurgy 46 (1997) 321.CrossRefGoogle Scholar
  59. 59.
    N. Ibl and K. Schadegg, J. Electrochem. Soc. 114 (1967) 54.CrossRefGoogle Scholar
  60. 60.
    P. M. Živković, N. D. Nikolić, M. Gvozdenović, and K. I. Popov, J. Serb. Chem. Soc. 74 (2009) 291.CrossRefGoogle Scholar
  61. 61.
    J. O’M. Bockris, A. K. N. Reddy, and M. Gamboa-Aldeco, Modern Electrochemistry 2 A, 2nd edition, Kluwer/Plenum, New York (2000) 1095.Google Scholar
  62. 62.
    A. R. Despić and K. I. Popov, “Transport controlled Deposition and Dissolution of Metals“, in Ed. by B. E. Conway and J. O’M. Bockris, Modern Aspects of Electrochemistry, Vol. 7, Plenum, New York (1972) Chapter 4, 204.Google Scholar
  63. 63.
    Yu. Chizmadzhev and Yu. G. Chirkov, “Porous Electrodes“, in Ed. by E. Yeager, J. O’M. Bockris, B. E. Conway, and S. Sarangapani, Comprehensive Treatise of Electrochemistry, Vol. 6, Plenum, New York and London (1983) Chapter ??, 317.Google Scholar
  64. 64.
    M. V. Ananth, V. V. Giridhar, and K. Renuga, Int. J. Hydrogen Energ. 34 (2009) 658.CrossRefGoogle Scholar
  65. 65.
    C. A. Marozzi and A. C. Chialvo, Electrochim. Acta 46 (2001) 861.CrossRefGoogle Scholar
  66. 66.
    L. Zhou, Y. F. Cheng, and M. Amrein, J. Power Sources 177 (2008) 50.CrossRefGoogle Scholar
  67. 67.
    M. Imamura, T. Haruyama, E. Kobatake, Y. Ikariyama, and M. Aizawa, Sens. Actuators B 24–25 (1995) 113.CrossRefGoogle Scholar
  68. 68.
    H. -K. Seo, D. -J. Park, and J. -Y. Park, Thin Solid Films 516 (2008) 5227.CrossRefGoogle Scholar
  69. 69.
    I. G. Casella, Electrochim. Acta 54 (2009) 3866.CrossRefGoogle Scholar
  70. 70.
    S. A. S. Machado, J. Tiengo, P. de Lima Neto, and L. A. Avaca, Electrochim. Acta 39 (1994) 1757.CrossRefGoogle Scholar
  71. 71.
    L. Li, F. Ye, L. Chen, T. Wang, J. Li, and Z. Wang, J. Power Sources 186 (2009) 320.CrossRefGoogle Scholar
  72. 72.
    V. Diaz, S. Real, E. Teliz, C. F. Zinola, and M. E. Martins, Int. J. Hydrogen Energ. 34 (2009) 3519.CrossRefGoogle Scholar
  73. 73.
    D. Pletcher, J. Appl. Electrochem. 14 (1984) 403.CrossRefGoogle Scholar
  74. 74.
    K. Lohrberg and P. Kohl, Electrochim. Acta 29 (1984) 1557.CrossRefGoogle Scholar
  75. 75.
    N. D. Nikolić, Lj. J. Pavlović, M. G. Pavlović, and K. I. Popov, J. Serb. Chem. Soc. 72 (2007) 1369.CrossRefGoogle Scholar
  76. 76.
    N. D. Nikolić, K. I. Popov, Lj. J. Pavlović, and M. G. Pavlović, J. Electroanal. Chem. 588 (2006) 88.CrossRefGoogle Scholar
  77. 77.
    N. D. Nikolić, Lj. J. Pavlović, M. G. Pavlović, and K. I. Popov, Electrochim. Acta 52 (2007) 8096.Google Scholar
  78. 78.
    N. D. Nikolić, G. Branković, V. M. Maksimović, M. G. Pavlović, and K. I. Popov, J. Solid State Electrochem. 14 (2010) 331.CrossRefGoogle Scholar
  79. 79.
    N. D. Nikolić, G. Branković, V. M. Maksimović, M. G. Pavlović, and K. I. Popov, J. Electroanal. Chem. 635 (2009) 111.CrossRefGoogle Scholar
  80. 80.
    G. E. Dima, A. C. A. de Vooys, and M. T. M. Koper, J. Electroanal. Chem. 554–555 (2003) 15.Google Scholar
  81. 81.
    W. -Y. Ko, W. -H. Chen, C. -Y. Cheng, and K. -J. Lin, Sens. Actuators B 137 (2009) 437.CrossRefGoogle Scholar
  82. 82.
    D. Pletcher and Z. Poorbedi, Electrochim. Acta 24 (1979) 1253.CrossRefGoogle Scholar
  83. 83.
    K. I. Popov, T. M. Kostić, N. D. Nikolić, E. R. Stojilković, and M. G. Pavlović, J. Electroanal. Chem. 464 (1999) 245.CrossRefGoogle Scholar
  84. 84.
    A. J. Arvia and R. C. Salvarezza, Electrochim. Acta 39 (1994) 1481.CrossRefGoogle Scholar
  85. 85.
    W. -Y. Ko, W. -H. Chen, S. -D. Tzeng, S. Gwo, and K. -J. Lin, Chem. Mater. 18 (2006) 6097.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Konstantin I. Popov
    • 1
    • 2
  • Predrag M. Živković
    • 2
  • Nebojša D. Nikolić
    • 1
  1. 1.ICTM-Institute of ElectrochemistryUniversity of BelgradeBelgradeSerbia
  2. 2.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia

Personalised recommendations