Advertisement

Hydrogen Co-deposition Effects on the Structure of Electrodeposited Copper

  • Nebojša D. Nikolić
  • Konstantin I. Popov
Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 48)

Abstract

The creation of open porous structures with an extremely high surface area is of great technological significance because such structures are ideally suited for electrodes in many electrochemical devices, such as fuel cells, batteries, and chemical sensors. The open porous structure enables the fast transport of gases and liquids, while the extremely high surface area is desirable for the evaluation of electrochemical reactions. The electrodeposition technique is very suitable for the preparation of such structures because it is possible to control the number, distribution, and pore size in these structures by the choice of appropriate electrolysis parameters.

Keywords

Hydrogen Evolution Copper Deposit Hydrodynamic Condition Hydrogen Evolution Reaction Copper Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The work was supported by the Ministry of Science and Technological Development of the Republic of Serbia under the research project: “Deposition of ultrafine powders of metals and alloys and nanostructured surfaces by electrochemical techniques” (No. 142032G).

References

  1. 1.
    H.-C. Shin, J. Dong, and M. Liu, Adv. Mater. 15 (2003) 1610.CrossRefGoogle Scholar
  2. 2.
    D. R. Gabe, J. Appl. Electrochem. 27 (1997) 908.CrossRefGoogle Scholar
  3. 3.
    J. K. Dennis and T. E. Such, Nickel and Chromium Plating, Newnes–Butterworths, London (1972).Google Scholar
  4. 4.
    R. Weiner and A. Walmsley, Chromium Plating, Finishing Publications Ltd., Teddington, Middlesex, England (1980).Google Scholar
  5. 5.
    F. A. Lowenheim, Electroplating, McGraw-Hill Book Company, New York; St. Louis (1978).Google Scholar
  6. 6.
    T. J. Wolery, EQ3NR – A Computer Program for Geochemical Aqueous Speciation-Solubility Calculations: Theoretical Manual and User’guide, Version 7.0. Lawrence Livermore National Laboratory, Livermore, CA (1992).Google Scholar
  7. 7.
    A. Roine, HSC Chemistry: Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database. 4.0. Outokumpu Research Oy, Finland (1999).Google Scholar
  8. 8.
    J. M. Casas, F. Alvarez, and L. Cifuentes, Chem. Eng. Sci. 55 (2000) 6223.CrossRefGoogle Scholar
  9. 9.
    K. S. Pitzer, Activity Coefficients in Electrolyte Solutions, 2nd edition, CRC, Boca Raton, FL (1991).Google Scholar
  10. 10.
    N. D. Nikolić, K. I. Popov, Lj. J. Pavlović, and M. G. Pavlović, J. Electroanal. Chem. 588 (2006) 88.CrossRefGoogle Scholar
  11. 11.
    V. D. Jović, B. M. Jović, and M. G. Pavlović, Electrochim. Acta 51 (2006) 5468.CrossRefGoogle Scholar
  12. 12.
    V. D. Jović, B. M. Jović, V. Maksimović, and M. G. Pavlović, Electrochim. Acta 52 (2007) 4254.CrossRefGoogle Scholar
  13. 13.
    K. I. Popov, S. S. Djokić, and B. N. Grgur, Fundamental Aspects of Electrometallurgy, Kluwer Academic/Plenum Publishers, New York (2002), and references therein.Google Scholar
  14. 14.
    H. Vogt, J. Appl. Electrochem. 25 (1995) 764.CrossRefGoogle Scholar
  15. 15.
    J. Eigeldinger, and H. Vogt, Electrochim. Acta 45 (2000) 4449.CrossRefGoogle Scholar
  16. 16.
    H. Vogt, Electrochim. Acta 50 (2005) 2073.CrossRefGoogle Scholar
  17. 17.
    N. D. Nikolić, K. I. Popov, Lj. J. Pavlović, and M. G. Pavlović, Surf. Coat. Technol. 201 (2006) 560.CrossRefGoogle Scholar
  18. 18.
    N. D. Nikolić, K. I. Popov, Lj. J. Pavlović, and M. G. Pavlović, J. Solid State Electrochem. 11 (2007) 667.CrossRefGoogle Scholar
  19. 19.
    N. D. Nikolić, K. I. Popov, Lj. J. Pavlović, and M. G. Pavlović, Sensors 7 (2007) 1.CrossRefGoogle Scholar
  20. 20.
    G. E. Dima, A. C. A. de Vooys, and M. T. M. Koper, J. Electroanal. Chem. 554–555 (2003) 15.Google Scholar
  21. 21.
    D. Pletcher and Z. Poorbedi, Electrochim. Acta 24 (1979) 1253.CrossRefGoogle Scholar
  22. 22.
    A. Calusaru, Electrodeposition of Metal Powders, Elsevier Scientific Publishing Company, Amsterdam; Oxford; New York (1979) 296.Google Scholar
  23. 23.
    K. I. Popov and M. G. Pavlović, in Modern Aspects of Electrochemistry, Vol. 24, Ed. by R. W. White, J. O’M. Bockris, and B. E. Conway, Plenum Press, New York (1993) 299–391.CrossRefGoogle Scholar
  24. 24.
    N. D. Nikolić, S. B. Krstić, Lj. J. Pavlović, M. G. Pavlović, and K. I. Popov, “The Mutual Relation of Decisive Characteristics of Electrolytic Copper Powder and Effect of Deposition Conditions On Them”, in Electroanalytical Chemistry Research Trends, Ed. by K. Hayashi, NOVA Publishers (2009) Chap. 8, 185–209.Google Scholar
  25. 25.
    M. G. Pavlović and K. I. Popov (2005). Metal Powder Production by Electrolysis, Electrochemistry Encyclopedia, http://electrochem.cwru.edu/ed/encycl/art-p04-metalpowder.htm.
  26. 26.
    M. G. Pavlović, N. D. Nikolić, and K. I. Popov, J. Serb. Chem. Soc. 68 (2003) 649.CrossRefGoogle Scholar
  27. 27.
    J. O’M. Bockris, Z. Nagy, and D. Dražić, J. Electrochem. Soc. 120 (1973) 30.CrossRefGoogle Scholar
  28. 28.
    K. I. Popov, M. D. Maksimović, J. D. Trnjančev, and M. G. Pavlović, J. Appl. Electrochem. 11 (1981) 239.CrossRefGoogle Scholar
  29. 29.
    N. Ibl, Chemie Ing. Techn. 33 (1961) 69.CrossRefGoogle Scholar
  30. 30.
    N. Ibl, Chemie Ing. Techn. 35 (1963) 353.CrossRefGoogle Scholar
  31. 31.
    L. J. Jenssen and J. G. Hoogland, Electrochim. Acta 15 (1970) 1013.CrossRefGoogle Scholar
  32. 32.
    J. O’M. Bockris, A. K. N. Reddy, and M. Gamboa-Aldeco, Modern Electrochemistry 2A, Fundamentals of Electrodics, Kluwer Academic/Plenum Publishers, New York, 2nd edition (2000).Google Scholar
  33. 33.
    L. Martins, J. I. Martins, A. S. Romeira, M. E. Costa, J. Costa, and M. Bazzaoui, Mater. Sci. Forum 455–456 (2004) 844.CrossRefGoogle Scholar
  34. 34.
    N. D. Nikolić, H. Wang, H. Cheng, C. Guerrero, E. V. Ponizovskaya, G. Pan, and N. Garcia, J. Electrochem. Soc. 151 (2004) C577.CrossRefGoogle Scholar
  35. 35.
    N. D. Nikolic, H. Wang, H. Cheng, C. A. Guerrero, and N. Garcia, J. Magn. Magn. Mater. 272–276 (2004) 2436.CrossRefGoogle Scholar
  36. 36.
    N. D. Nikolić, J. Serb. Chem. Soc. 70 (2005) 1213.CrossRefGoogle Scholar
  37. 37.
    N. D. Nikolić, J. Serb. Chem. Soc. 70 (2005) 785.CrossRefGoogle Scholar
  38. 38.
    N. D. Nikolić, J. Serb. Chem. Soc. 71 (2006) 1083.CrossRefGoogle Scholar
  39. 39.
    N. D. Nikolić, J. Serb. Chem. Soc. 72 (2007) 787.CrossRefGoogle Scholar
  40. 40.
    M. G. Pavlović, Š. Kindlova, and I. Roušar, Electrochim. Acta 37 (1992) 23.CrossRefGoogle Scholar
  41. 41.
    R. Aogaki, K. Fueki, and T. Mukaibo, Denki Kagaku 43 (1975) 509.Google Scholar
  42. 42.
    J. P. Glas and J. W. Westwater, Int. J. Heat Mass Transf. 7 (1964) 1427.CrossRefGoogle Scholar
  43. 43.
    R. Kaishew and B. Mutafctschiew, Electrochim. Acta 10 (1965) 643.CrossRefGoogle Scholar
  44. 44.
    S. Štrbac, Z. Rakočević, K. I. Popov, M. G. Pavlović, and R. Petrović, J. Serb. Chem. Soc. 64 (1999) 483.Google Scholar
  45. 45.
    I. Markov, A. Boynov, and S. Toshev, Electrochim. Acta 18 (1973) 377.CrossRefGoogle Scholar
  46. 46.
    K. I. Popov, B. N. Grgur, E. R. Stojilković, M. G. Pavlović, and N. D. Nikolić, J. Serb. Chem. Soc. 62 (1997) 433.Google Scholar
  47. 47.
    A. Milchev, W. S. Kruijt, M. Sluyters-Rehbach, and J. H. Sluyters, J. Electroanal. Chem. 362 (1993) 21.CrossRefGoogle Scholar
  48. 48.
    W. S. Kruijt, M. Sluyters-Rehbach, J. H. Sluyters, and A. Milchev, J. Electroanal. Chem. 371 (1994) 13.CrossRefGoogle Scholar
  49. 49.
    N. Kovarskii and A. V. Lisov, Elektrokhimiya 20 (1984) 221 (in Russian).Google Scholar
  50. 50.
    N. Kovarskii and A. V. Lisov, Elektrokhimiya 20 (1984) 833 (in Russian).Google Scholar
  51. 51.
    N. Kovarskii and T. A. Arzhanova, Elektrokhimiya 20 (1984) 452 (in Russian).Google Scholar
  52. 52.
    K. I. Popov, Lj. J. Pavlović, M. G. Pavlović, and M. I. Čekerevac, Surf. Coat. Technol. 35 (1988) 39.CrossRefGoogle Scholar
  53. 53.
    K. I. Popov, M. G. Pavlović, Lj. J. Pavlović, M. I. Čekerevac, and G. Ž. Remović, Surf. Coat. Technol. 34 (1988) 355.CrossRefGoogle Scholar
  54. 54.
    K. I. Popov, M. G. Pavlović, E. R. Stojilković, and Z. Ž. Stevanović, Hydrometallurgy 46 (1997) 321.CrossRefGoogle Scholar
  55. 55.
    K. I. Popov, S. K. Zečević, and S. M. Pešić, J. Serb. Chem. Soc. 61 (1996) 583.Google Scholar
  56. 56.
    K. I. Popov, N. D. Nikolić, and Z. Rakočević, J. Serb. Chem. Soc. 67 (2002) 635.CrossRefGoogle Scholar
  57. 57.
    K. I. Popov, N. D. Nikolić, and Z. Rakočević, J. Serb. Chem. Soc. 67 (2002) 769.CrossRefGoogle Scholar
  58. 58.
    N. D. Nikolić, Lj. J. Pavlović, M. G. Pavlović, and K. I. Popov, Electrochim. Acta 52 (2007) 8096.CrossRefGoogle Scholar
  59. 59.
    N. D. Nikolić, Lj. J. Pavlović, G. Branković, M. G. Pavlović, and K. I. Popov, J. Serb. Chem. Soc. 73 (2008) 753.CrossRefGoogle Scholar
  60. 60.
    N. D. Nikolić, Lj. J. Pavlović, S. B. Krstić, M. G. Pavlović, and K. I. Popov, Chem. Eng. Sci. 63 (2008) 2824.CrossRefGoogle Scholar
  61. 61.
    D. G. Offin, P. R. Birkin, and T. G. Leighton, Electrochem. Commun. 9 (2007) 1062.CrossRefGoogle Scholar
  62. 62.
    K. I. Popov, V. Radmilović, B. N. Grgur, and M. G. Pavlović, J. Serb. Chem. Soc. 59 (1994) 47.Google Scholar
  63. 63.
    L. Barton and J. O’M. Bockris, Proc. R. Soc. A268 (1962) 485.Google Scholar
  64. 64.
    J. W. Diggle, A. R. Despić, and J. O’M. Bockris, J. Electrochem. Soc. 116 (1969) 1503.CrossRefGoogle Scholar
  65. 65.
    E. Gileadi, Electrode Kinetics, VCH Publishers Inc., New York, (1993) 443.Google Scholar
  66. 66.
    K. I. Popov, N. V. Krstajić, and M. I. Čekerevac, in: Modern Aspects of Electrochemistry, Vol. 30, Ed. by R. E. White, B. E. Conway, and J. O’M. Bockris, Plenum Press, New York (1996) 261–311, and references therein.Google Scholar
  67. 67.
    N. D. Nikolić, G. Branković, M. G. Pavlović, and K. I. Popov, J. Electroanal. Chem. 621 (2008) 13.CrossRefGoogle Scholar
  68. 68.
    N. D. Nikolić, Lj. J. Pavlović, M. G. Pavlović, and K. I. Popov, J. Serb. Chem. Soc. 72 (2007) 1369.CrossRefGoogle Scholar
  69. 69.
    E. Budevski, G. Staikov, and W. J. Lorenz, Electrochemical Phase Formation and Growth, An Introduction to the Initial Stages of metal Deposition, VCH Weinheim, New York; Basel; Cambridge; Tokyo (1996) 163.CrossRefGoogle Scholar
  70. 70.
    M. Volmer and A. Weber, Z. Physik. Chem. 119 (1926) 277.Google Scholar
  71. 71.
    H. Vogt and R. J. Balzer, Electrochim. Acta 50 (2005) 2073.CrossRefGoogle Scholar
  72. 72.
    M. Krenz, Untersuchung des elektrodennahen Raumes gasentwickelnder elektroden, Dissertation A, Humboldt-Universitat, Berlin (1984).Google Scholar
  73. 73.
    A. Amadi, D. R. Gabe, and M. Goodenough, J. Appl. Electrochem. 21 (1991) 1114.CrossRefGoogle Scholar
  74. 74.
    W. Fritz, Phys. Z. 36 (1935) 379.Google Scholar
  75. 75.
    K. Stephan, Heat Transfer in Condensation and Boiling, Springer, Berlin (1992).Google Scholar
  76. 76.
    N. Ibl, E. Adam, J. Venczel, and E. Schalch, Chem. Eng. Tech. 43 (1971) 202.Google Scholar
  77. 77.
    H. Vogt, Gas evolving electrodes, in: Comprehensive Treatise of Electrochemistry, Vol. 6, Ed. by E. Yeager, J. O. M. Bockris, B. E. Conway, and S. Sarangapani, Plenum Press, New York (1983) 455.Google Scholar
  78. 78.
    S.-C. Chang, Y.-L. Wang, C.-C. Hung, W.-H. Lee, and G.-J. Hwang, J. Vac. Sci. Technol. A 25 (2007) 566.CrossRefGoogle Scholar
  79. 79.
    D. C. Price and W. G. Davenport, Metall. Trans. B 11 B (1980) 159.CrossRefGoogle Scholar
  80. 80.
    N. D. Nikolić, Lj. J. Pavlović, M. G. Pavlović, and K. I. Popov, Powder Technol. 185 (2008) 195.CrossRefGoogle Scholar
  81. 81.
    G. Wranglen, Electrochim. Acta 2 (1960) 130.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nebojša D. Nikolić
    • 1
  • Konstantin I. Popov
    • 1
    • 2
  1. 1.ICTM-Institute of ElectrochemistryUniversity of BelgradeBelgradeSerbia
  2. 2.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia

Personalised recommendations