Bioaerosol Detection with Atomic Emission Spectroscopy

Part of the Integrated Analytical Systems book series (ANASYS)


Techniques based on atomic emission spectroscopy (AES), as flame emission spectroscopy (FES), or laser-induced plasma spectroscopy (LIBS), could be of interest for fast detection and classification of biological warfare agents (BWA). Bioagents can be directly investigated in real time by these techniques, without sample preparation in ambient atmosphere. Complex interactions between an energetic flame or a thermal plasma and the bioaerosol compounds provide spectral signals that are characteristic of the particle elementary composition. Detectors require sampling system, reactor (flame or plasma), optical sensors, and reliable data processing. The challenge is to develop sensitive tools to detect low BWA concentrations within a natural and complex atmospheric background. Firstly, FES is described in general terms with emphasis put on flame transformation processes. Representative and experimental FES applications are illustrated. Then, LIBS technique is presented with elementary limits of detection, and complex plasma–particle interactions. Differences between FES and LIBS are discussed, as well as possible complementary use. Potential technical improvements are suggested for both techniques to further enhance the bioaerosol detection.


Partial Little Square Analysis Principal Component Analysis Flame Temperature Atomic Emission Spectroscopy Mars Science Laboratory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dean JA (1960) Flame Photometry. McGraw-Hill series in advanced chemistry. McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Binek B, Dohnalova B, Przyborowski S, Ullmann W (1967) Using the scintillation spectrometer for aerosols in research and industry. Staub 27:379–383Google Scholar
  3. 3.
    Clark CD, Campuzano-Jost P, Covert DS, Richter RC, Maring H, Hynes AJ, Saltzman ES (2001) Real-time measurement of sodium in single aerosol particles by flame emission: laboratory characterization. J Aerosol Sci 32 (6):765–778. doi:10.1016/S0021-8502(00)00120-8CrossRefGoogle Scholar
  4. 4.
    Huntzicker JJ, Hoffman RS, Ling C-S (1978) Continuous measurement and speciation of sulfur-containing aerosols by flame photometry. Atmos Environ 12 (1–3):83–88. doi:10.1016/0004-6981(78)90190-7CrossRefGoogle Scholar
  5. 5.
    Guichard JC, Lamauve M (1979) La mesure du diamètre chimique des particules au compteur à scintillation—application a l’étude de l’aérosol atmosphérique. Atmos Environ 13 (4):511–517. doi:10.1016/0004-6981(79)90144-6CrossRefGoogle Scholar
  6. 6.
    Mavrodineanu R (ed) (1970) Analytical flame spectroscopy: selected topics. Macmillan & Co. Ltd., LondonGoogle Scholar
  7. 7.
    Levet R (2002) Faire face au risque chimique et biologique. L’Armement 77:78–84Google Scholar
  8. 8.
    Wind F (2002) Contribution de la spectrométrie de masse à la détection et à l’identification de bactéries: Intérêt du couplage avec la pyrolyse. Ph. D., Conservatoire National des Arts et Métiers, ParisGoogle Scholar
  9. 9.
    Suzanne P (1987) Application de la photométrie de flamme au comptage de particules d’un aéosol. In: 4èmes Jourées d’études sur les aérosols: Paris, 1 et 2 décembre 1987, Paris and Vert le Petit, 1–2 December 1987. GAMS, Paris, pp 33–42Google Scholar
  10. 10.
    Herrmann R, Alkemade CTJ (1963) Chemical analysis by flame photometry (trans: Gilbert Jr. PT), vol 14. Chemical analysis, 2 edn. John Wiley & Sons, New YorkGoogle Scholar
  11. 11.
    Madigan MT, Martinko JM, Paker J (1997) Biology of microorganisms. Brock, 8 edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  12. 12.
    Descroix D, Lancelin H, Adam P (2004) Detection of biological aerosols with the biological alarm monitor (MAB). Paper presented at the 4th Singapore International Symposium On Protection Against Toxic Substances (SISPAT), Singapore, 4–10 December 2004Google Scholar
  13. 13.
    Gaydon AG, Wolfhard HG (1960) Flames: their structure, radiation and temperature. 2 edn. Chapman and Hall Ltd, LondonGoogle Scholar
  14. 14.
    Baxter K, Castle MJ, Withers PB, Clark JM (2004) The UV LIDAR for stand-off airborne biological weapons detection. Paper presented at the 8th International Symposium on Protection Against Chemical and Biological Warfare Agents, Gothenburg, 2–6 June 2004Google Scholar
  15. 15.
    Adam P, Descroix D, Chiaroni JP (1998) Flame photometry for biological detection. Paper presented at the 6th International Symposium on Protection Against Chemical and Biological Warfare Agents, Stockholm, 10–15 May 1998Google Scholar
  16. 16.
    Hahn DW, Lunden MM (2000) Detection and Analysis of Aerosol Particles by Laser-Induced Breakdown Spectroscopy. Aerosol Sci Technol 33 (1–2):30–48. doi:10.1080/027868200410831CrossRefGoogle Scholar
  17. 17.
    Hybl JD, Lithgow GA, Buckley SG (2003) Laser-Induced Breakdown Spectroscopy Detection and Classification of Biological Aerosols. Appl Spectrosc 57 (10):1207–1215CrossRefGoogle Scholar
  18. 18.
    Morel S, Leone N, Adam P, Amouroux J (2003) Detection of Bacteria by Time-Resolved Laser-Induced Breakdown Spectroscopy. Appl Opt 42 (30):6184–6191. doi:10.1364/AO.42.006184CrossRefGoogle Scholar
  19. 19.
    Alkemade CTJ (1970) From sample to signal in emission flame photometry; an experimental discussion. In: Mavrodineanu R (ed) Analytical flame spectroscopy: selcted topics. Macmillan & Co. Ltd., London,Google Scholar
  20. 20.
    Adam P (2005) French technological trends for B and C detection. Paper presented at the 5th CBRN seminar, Avignon, France, 10–12 May 2005Google Scholar
  21. 21.
    Pungor E (1967) Flame photometry theory. The Van Nostrand series in analytical chemistry. Van Nostrand Company Limited, LondonGoogle Scholar
  22. 22.
    Veynante D (1999) Flamme de diffusion laminaire -Sciences de base. Technique de l’ingénieur BE 2 (Article BE8320)Google Scholar
  23. 23.
    Pruvot P (1972) Spectrophotométrie de flammes. Gauthier—Villars, ParisGoogle Scholar
  24. 24.
    Alkemade CTJ, Herrmann R (1979) The Flame. In: Alkemade C (ed) Fundamentals of analytical flame spectroscopy. Wiley, New York,Google Scholar
  25. 25.
    Proengin Accessed 16 January 2014
  26. 26.
    Descroix D, Lancelin H, Scurrah K, Attoui MB (2003) Design and calibration of a stand-alone impactor bacteria-pollen device for flame spectroscopy. Paper presented at the European Aerosol Conference, Madrid, 31 August–5 September 2003Google Scholar
  27. 27.
    Marple VA, Willeke K (1976) Inertial impactor: theory, design and use. In: Liu BYH (ed) Fine particles: aerosol generation, measurement, sampling, and analysis. Academic Press, New York, pp 412–446Google Scholar
  28. 28.
    Marple VA, Rubow KL, Olson BA (1993) Inertial, gravitational, centrifugal and thermal collection techniques. In: Willeke K, Baron PA (eds) Aerosol measuremen: principles, techniques and applications. Van Nostrand Reinhold, New York, pp 206–259Google Scholar
  29. 29.
    Descroix D, Lancelin H, Scurrah K, Attoui MB (2004) Design and calibration of a virtual impactor that concentrates the particle-laden stream for a flame spectroscopy device. Paper presented at the European Aerosol Conference, Budapest, 6–10 September 2004Google Scholar
  30. 30.
    Kim MC, Lee KW (2000) Design Modification of Virtual Impactor for Enhancing Particle Concentration Performance. Aerosol Sci Technol 32 (3):233–242. doi:10.1080/027868200303768CrossRefGoogle Scholar
  31. 31.
    Descroix D, Gustafson I, Lancelin H, Olofsson G, Rännar S, Tjärnhage T (2004) Biological Aerosol Classification with Spectroscopic Flame Photometry and Principal Component Analysis. Paper presented at the 8th International Symposium on Protection Against Chemical and Biological Warfare Agents, Gothenburg, 2–6 June 2004Google Scholar
  32. 32.
    Descroix D (2005) Application de la spectrophotométrie de flamme à la détection des aérosols biologiques dans l’air ambiant par analyse multivariée. Ph. D., Paris 12, CréteilGoogle Scholar
  33. 33.
    Cremer DA, Radziemski LJ (2006) Handbook of laser-induced breakdown spectroscopy John Wiley & Sons, Chichester. doi:10.1002/0470093013Google Scholar
  34. 34.
    Bublitz J, Dölle C, Schade W, Hartmann A, Horn R (2001) Laser-induced breakdown spectroscopy for soil diagnostics. Eur J Soil Sci 52 (2):305–312. doi:10.1046/j.1365-2389.2001.00375.xCrossRefGoogle Scholar
  35. 35.
    Burakov VS, Raikov SN, Tarasenko NV, Belkov MV, Kiris VV (2010) Development of a laser-induced breakdown spectroscopy method for soil and ecological analysis (review). J Appl Spectrosc 77 (5):595–608. doi:10.1007/s10812-010-9374-9CrossRefGoogle Scholar
  36. 36.
    Hahn DW, Flower WL, Hencken KR (1997) Discrete Particle Detection and Metal Emissions Monitoring Using Laser-Induced Breakdown Spectroscopy. Appl Spectrosc 51 (12):1836–1844CrossRefGoogle Scholar
  37. 37.
    Boyain-Goitia AR, Beddows DCS, Griffiths BC, Telle HH (2003) Single-Pollen Analysis by Laser-Induced Breakdown Spectroscopy and Raman Microscopy. Appl Opt 42 (30):6119–6132. doi:10.1364/AO.42.006119CrossRefGoogle Scholar
  38. 38.
    Dockery CR, Goode SR (2003) Laser-Induced Breakdown Spectroscopy for the Detection of Gunshot Residues on the Hands of a Shooter. Appl Opt 42 (30):6153–6158. doi:10.1364/AO.42.006153CrossRefGoogle Scholar
  39. 39.
    Barnett C, Cahoon E, Almirall JR (2008) Wavelength dependence on the elemental analysis of glass by Laser Induced Breakdown Spectroscopy. Spectrochim Acta B 63 (10):1016–1023. doi:10.1016/j.sab.2008.07.002CrossRefGoogle Scholar
  40. 40.
    Liu X-Y, Zhang W-J (2008) Recent developments in biomedicine fields for laser induced breakdown spectroscopy. J Biomed Sci Eng 1:147–151. doi:10.4236/jbise.2008.13024CrossRefGoogle Scholar
  41. 41.
    St-Onge L, Kwong E, Sabsabi M, Vadas EB (2002) Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy. Spectrochim Acta B 57 (7):1131–1140. doi:10.1016/S0584-8547(02)00062-9CrossRefGoogle Scholar
  42. 42.
    Green RL, Mowery MD, Good JA, Higgins JP, Arrivo SM, McColough K, Mateos A, Reed RA (2005) Comparison of Near-Infrared and Laser-Induced Breakdown Spectroscopy for Determination of Magnesium Stearate in Pharmaceutical Powders and Solid Dosage Forms. Appl Spectrosc 59 (3):340–347CrossRefGoogle Scholar
  43. 43.
    Miziolek AW, Palleschi V, Schechter I (eds) (2006) Laser Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  44. 44.
    Gottfried J, Lucia F, Jr., Munson C, Miziolek A (2009) Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects. Anal Bioanal Chem 395 (2):283–300. doi:10.1007/s00216-009-2802-0CrossRefGoogle Scholar
  45. 45.
    Whitehouse AI, Young J, Botheroyd IM, Lawson S, Evans CP, Wright J (2001) Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy. Spectrochim Acta B 56 (6):821–830. doi:10.1016/S0584-8547(01)00232-4CrossRefGoogle Scholar
  46. 46.
    Hernandez C, Roche H, Pocheau C, Grisolia C, Gargiulo L, Semerok A, Vatry A, Delaporte P, Mercadier L (2009) Development of a Laser Ablation System Kit (LASK) for Tokamak in vessel tritium and dust inventory control. Fusion Eng Des 84 (2–6):939–942. doi:10.1016/j.fusengdes.2008.12.033CrossRefGoogle Scholar
  47. 47.
    Sallé B, Cremers DA, Maurice S, Wiens RC (2005) Laser-induced breakdown spectroscopy for space exploration applications: Influence of the ambient pressure on the calibration curves prepared from soil and clay samples. Spectrochim Acta B 60 (4):479–490. doi:10.1016/j.sab.2005.02.009CrossRefGoogle Scholar
  48. 48.
    Sallé B, Cremers DA, Maurice S, Wiens RC, Fichet P (2005) Evaluation of a compact spectrograph for in-situ and stand-off Laser-Induced Breakdown Spectroscopy analyses of geological samples on Mars missions. Spectrochim Acta B 60 (6):805–815. doi:10.1016/j.sab.2005.05.007CrossRefGoogle Scholar
  49. 49.
    Moros J, Lorenzo JA, Laserna JJ (2011) Standoff detection of explosives: critical comparison for ensuing options on Raman spectroscopy-LIBS sensor fusion. Anal Bioanal Chem 400 (10):3353–3365. doi:10.1007/s00216-011-4999-yCrossRefGoogle Scholar
  50. 50.
    Hahn DW, Omenetto N (2012) Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields. Appl Spectrosc 66 (4):347–419. doi:10.1366/11-06574CrossRefGoogle Scholar
  51. 51.
    Cabalín LM, Laserna JJ (1998) Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation. Spectrochim Acta B 53 (5):723–730. doi:10.1016/S0584-8547(98)00107-4CrossRefGoogle Scholar
  52. 52.
    Hahn DW (2009) Laser-Induced Breakdown Spectroscopy for Analysis of Aerosol Particles: The Path Toward Quantitative Analysis. Spectroscopy 24 (9):27–33Google Scholar
  53. 53.
    Dixon PB, Hahn DW (2004) Feasibility of Detection and Identification of Individual Bioaerosols Using Laser-Induced Breakdown Spectroscopy. Anal Chem 77 (2):631–638. doi:10.1021/ac048838iCrossRefGoogle Scholar
  54. 54.
    Leone N, Fath G, Adam P (2007) Advances in the detection of chemical and biological aerosolized pollutants by means of a field-transportable laser-induced breakdown spectroscopy-based detector. High Temp Mater Process 11 (1):125–147. doi:10.1615/HighTempMatProc.v11.i1.110CrossRefGoogle Scholar
  55. 55.
    Hybl JD, Tysk SM, Berry SR, Jordan MP (2006) Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection. Appl Opt 45 (34):8806–8814. doi:10.1364/AO.45.008806CrossRefGoogle Scholar
  56. 56.
    Tjärnhage T, Gradmark P-Å, Larsson A, Mohammed A, Landström L, Sagerfors E, Jonsson P, Kullander F, Andersson M (2013) Development of a laser-induced breakdown spectroscopy instrument for detection and classification of single-particle aerosols in real-time. Opt Commun 296 (0):106–108. doi:10.1016/j.optcom.2013.01.044CrossRefGoogle Scholar
  57. 57.
    Hahn DW, Omenetto N (2010) Laser-Induced Breakdown Spectroscopy (LIBS), Part I: Review of Basic Diagnostics and Plasma-Particle Interactions: Still-Challenging Issues Within the Analytical Plasma Community. Appl Spectrosc 64 (12):335A–366ACrossRefGoogle Scholar
  58. 58.
    Eriksson L, Johansson E, Kettaneh-Wold N, Wold S (2001) Multi- and megavariate data analysis: principles and applications. Umetrics Academy, UmeåGoogle Scholar
  59. 59.
    Lebart L, Morineau A, Warwick KM (1984) Multivariate descriptive statistical analysis: correspondence analysis and related techniques for large matrices (trans: Berry EM). Wiley series in probability and mathematical statistics. John Wiley & sons, New YorkGoogle Scholar
  60. 60.
    Descroix D, Attoui MB (2007) Application of the flame spectrophotometry in the biological Aerosol detection in the airborne particle, using statistical Multi- and megavariate analysis. Paper presented at the European Aerosol Conference, Salzburg, 9–14 September 2007Google Scholar
  61. 61.
    Georgin J-P (2002) Analyse interactive des données (ACP, AFC) avec Excel 2000: théorie et pratique. Collection Didact Statistique. Presses Universitaires de Rennes, RennesGoogle Scholar

Copyright information

© Springer-Verlag New York 2014

Authors and Affiliations

  • Nicolas Leone
    • 1
  • Damien Descroix
    • 1
  • Salam Mohammed
    • 2
  1. 1.Physical Detection DepartmentDGA CBRN DefenceVert le PetitFrance
  2. 2.Division of CBRN Defence and SecurityFOI—Swedish Defence Research AgencyUmeåSweden

Personalised recommendations