Skip to main content

Aerosol Sampling and Transport

  • Chapter
  • First Online:
  • 1412 Accesses

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

The instruments described in this section aim at detecting biological particles suspended in air. This chapter describes the art and components of sampling the aerosol and transporting the particles to the actual detection unit, while keeping them airborne. Depending on the detection principle, later stages may require transferring the particles into another medium such as a liquid.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Belyaev SP, Levin LM (1974) Techniques for collecting of representative aerosol samples. J Aerosol Sci 5:325–338

    Article  Google Scholar 

  2. Bergman W, Shinn, Lochner R et al (2005) High air flow, low pressure drop, bio-aerosol collector using a multi-slit virtual impactor. J Aerosol Sci 36:619–638

    Article  CAS  Google Scholar 

  3. Brockmann JE (2001) Sampling and Transport of Aerosols. In: Baron PA, Willeke K (ed) Aerosol Measurement: Principles, Techniques, and Applications, 2nd edn. Wiley, New York

    Google Scholar 

  4. Chen BT, Yeh HC (1987) An improved virtual impactor: Design and performance. J Aerosol Sci 18:203–214

    Article  CAS  Google Scholar 

  5. Conner WD (1966) An inertial-type particle separator for collecting large samples. JAPCA J Air Waste Ma 16:35–38

    CAS  Google Scholar 

  6. Davies CN (1968) The entry of aerosols into sampling tubes and heads. Br J Appl Phys (J Phys D: Appl Phys) 1:921–932

    Article  Google Scholar 

  7. Durham MD, Lundgren DA (1980) Evaluation of aerosol aspiration efficiency as a function of stokes number, velocity ratio and nozzle angle. J Aerosol Sci 11:179–188

    Article  Google Scholar 

  8. Dzubay TG, Stevens RK (1975) Ambient air analysis with dichotomous sampler and X-ray fluorescence spectrometer. Environ Sci Technol 9: 663–668

    Google Scholar 

  9. European Committee for Standardization (1998) EN 12341:1998 Air quality—Determination of the PM 10 fraction of suspended particulate matter—Reference method and field test procedure to demonstrate reference equivalence of measurement methods. Brussels

    Google Scholar 

  10. Forney LJ, Ravenhall DG, Lee SS (1982) Experimental and theoretical study of a two-dimensional virtual impactor. Environ Sci Technol 16:492–497

    Google Scholar 

  11. Fuchs NA (1964) The Mechanics of Aerosols. Pergamon Press, Oxford

    Google Scholar 

  12. Granger RA (1995) Fluid Mechanics. Dover Publications, New York

    Google Scholar 

  13. Haglund JS, Chandra S, McFarland AR (2002) Evaluation of a high volume aerosol concentrator. Aerosol Sci Technol 36:690–696

    Article  CAS  Google Scholar 

  14. Haglund JS, McFarland AR (2004) A circumferential slot virtual impactor. Aerosol Sci Technol 38:664–674

    Article  CAS  Google Scholar 

  15. Hangal S, Willeke K. (1990) Aspiration efficiency: Unified model for all forward sampling angles. Environ Sci Technol 24:688–691.

    Article  CAS  Google Scholar 

  16. Heyder J, Gebhart J (1977) Gravitational deposition of particles from laminar aerosol flow through inclined circular tubes. J Aerosol Sci 8:289–295

    Google Scholar 

  17. Hangal S, Willeke K (1990) Overall efficiency of tubular inlets sampling at 0–90 degrees from horizontal aerosol flows. Atmos Environ A-Gen 24A:2379–2386.

    Article  CAS  Google Scholar 

  18. Hinds WC (1999) Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd edn. Wiley, New York

    Google Scholar 

  19. Ho J (2012) Use of Virtual Impactor (VI) Technology in Biological Aerosol Detection. Kona Powder Part J 29:16–26

    Article  Google Scholar 

  20. Ho J, Stanley NJ, Kuehn TH (2011) Feasibility of using real-time optical methods for detecting the presence of viable bacteria aerosols at low concentrations in clean room environments. Aerobiologia 27:163–172

    Article  Google Scholar 

  21. Kaye PH, Stanley WR, Hirst E et al (2005) Single particle multichannel bio-aerosol fluorescence sensor. Opt Express 13: 3583–3593

    Article  CAS  Google Scholar 

  22. Kesavan J, Bottiger JR, McFarland AR (2008) Bioaerosol concentrator performance: comparative tests with viable and with solid and liquid nonviable particles. J Appl Microbiol 104:285–295

    Google Scholar 

  23. Keskinen J, Lehtimäki M, Janka K (1987) Virtual impactor as an accessory to optical particle counters. Aerosol Sci Technol 6:79–83

    Google Scholar 

  24. John W (1999) A simple derivation of the cutpoint of an impactor. J. Aerosol Sci. 30:1317–1320

    Article  CAS  Google Scholar 

  25. Lee KW, Gieseke JA (1994) Deposition of particles in turbulent pipe flows. J Aerosol Sci 25:699–709

    Google Scholar 

  26. Lee P, Chen D-R, Pui DYH (2003) Experimental study of a nanoparticle virtual impactor. J Nanopart Res 5: 269–280

    CAS  Google Scholar 

  27. Liebhaber FB, Lehtimäki M, Willeke K (1991) Low-cost virtual impactor for large-particle amplification in optical particle counters. Aerosol Sci Technol. 15:208–213

    Article  CAS  Google Scholar 

  28. Liu BYH, Pui DYH (1981) Aerosol sampling inlets and inhalable particles. Atmos Environ 15: 589–600

    Google Scholar 

  29. Liu BYH, Zhang ZQ, Kuehn TH (1989) A numerical study of inertial errors in anisokinetic sampling. J Aerosol Sci 20: 367–380

    Article  CAS  Google Scholar 

  30. Loo BW, Cork CP (1988) Development of High Efficiency Virtual Impactors. Aerosol Sci Technol 9:167–176

    Article  CAS  Google Scholar 

  31. Marjamäki M, Keskinen J, Chen D-R et al (2000) Performance evaluation of electrical low pressure impactor (ELPI). J Aerosol Sci 31:249–261

    Article  Google Scholar 

  32. Marple VA and Chien CM (1980) Virtual impactors: a theoretical study. Environ Sci Technol 14:976–984

    Article  CAS  Google Scholar 

  33. Marple VA, Olson BA, Rubow KL (2001) Inertial, Gravitational, Centrifugal, and Thermal Collection Techniques. In: Baron PA, Willeke K (ed) Aerosol Measurement: Principles, Techniques, and Applications, 2nd edn. Wiley, New York

    Google Scholar 

  34. Muyshondt A, McFarland AR, Anand NK (1996) Deposition of aerosol particles in contraction fittings. Aerosol Sci Technol 24:205–216

    Article  CAS  Google Scholar 

  35. Novick VJ, Alvarez JL (1987) Design of a multistage virtual impactor. Aerosol Sci Technol 6:63–70

    Google Scholar 

  36. Pan Y-L, Hartings J, Pinnick RG et al (2003) Single-particle fluorescence spectrometer for ambient aerosols. Aerosol Sci Technol 37:628–639

    Article  CAS  Google Scholar 

  37. Park D, Kim Y-H, Woo Park C et al (2009) New bio-aerosol collector using a micromachined virtual impactor. J Aerosol Sci 40:415–422

    Article  CAS  Google Scholar 

  38. Pinnick RG, Hill SC, Nachman P, Pendleton JD, Fernandez GL, Mayo MW, Bruno JG (1995). Fluorescence particle counter for detecting airborne bacteria and other biological particles. Aerosol Sci Technol 23: 653–664

    Google Scholar 

  39. Pui DYH, Romay-Novas F, Liu BYH (1987) Experimental study of particle deposition in bends of circular cross section. Aerosol Sci Technol 7:301–315

    Article  CAS  Google Scholar 

  40. Romay FJ, Roberts, Marple VA et al (2002) A high-performance aerosol concentrator for biological agent detection. Aerosol Sci Technol 36:217–226

    Article  CAS  Google Scholar 

  41. Rostedt A, Putkiranta M, MarjamaÌki M et al (2006) Optical chamber design for aerosol particle fluorescent measurement. Proceedings of SPIE—The International Society for Optical Engineering 6398, art. no. 63980G

    Google Scholar 

  42. Seinfeld JH, Pandis SN (1998) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley, New York

    Google Scholar 

  43. Sioutas C, Koutrakis P, Burton RM (1994) Development of a low cutpoint slit virtual impactor for sampling ambient fine particles. J Aerosol Sci 25:1321–1330

    Article  CAS  Google Scholar 

  44. Thomas JW (1958) Gravity settling of particles in a horizontal tube. J Air Pollut Control Assoc 8: 32–34

    Google Scholar 

  45. Vincent JH (2007) Aerosol Sampling—Science, Standards, Instrumentation and Applications. Wiley, Chichester

    Google Scholar 

  46. Wu JJ, Cooper DW, Miller RJ (1989) Virtual impactor aerosol concentrator for cleanroom monitoring. J Environ Sci 32:52–56

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorma Keskinen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag New York

About this chapter

Cite this chapter

Keskinen, J., Marjamäki, M. (2014). Aerosol Sampling and Transport. In: Jonsson, P., Olofsson, G., Tjärnhage, T. (eds) Bioaerosol Detection Technologies. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5582-1_5

Download citation

Publish with us

Policies and ethics