Advertisement

Physical and Biological Properties of Bioaerosols

  • Jakob Löndahl
Chapter
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

Bioaerosols include bacterial cells and spores, viruses, pollen, fungi, algae, detritus, allergens and cell fragments. Bioaerosol particles are usually a small fraction of all aerosol particles in our surroundings, but their impact can be critical. They are a means for transmission of disease, they cause allergic reactions and they have effects on the global climate, ecology and biodiversity. This chapter provides an overview of the main types of bioaerosol particles, their sources, transport and sinks, and their potential effects on health and atmosphere.

Keywords

Aerosol Particle Cloud Droplet Cloud Condensation Nucleus Yersinia Pestis Francisella Tularensis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Xie CQ, Shen FX, Yao MS (2011) A novel method for measuring the charge distribution of airborne microbes. Aerobiologia 27 (2):135–145. doi:10.1007/s10453-010-9183-xGoogle Scholar
  2. 2.
    Womack AM, Bohannan BJM, Green JL (2010) Biodiversity and biogeography of the atmosphere. Philos T R Soc B 365 (1558):3645–3653. doi:10.1098/rstb.2010.0283Google Scholar
  3. 3.
    Lighthart B (1997) The ecology of bacteria in the alfresco atmosphere. Fems Microbiol Ecol 23 (4):263–274. doi:10.1016/S0168-6496(97)00036-6Google Scholar
  4. 4.
    Lee S, Fuhrman JA (1987) Relationships between Biovolume and Biomass of Naturally Derived Marine Bacterioplankton. Applied and Environmental Microbiology 53 (6):1298–1303Google Scholar
  5. 5.
    Gorny RL, Dutkiewicz J, Krysinska-Traczyk E. (1999) Size distribution of bacterial and fungal bioaerosols in indoor air. Annals of Agricultural and Environmental Medicine 6 (2):105–113Google Scholar
  6. 6.
    Arslan D, Legendre M, Seltzer V, Abergel C, Claverie JM (2011) Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. Proceedings of the National Academy of Sciences of the United States of America 108 (42):17486–17491. doi:10.1073/pnas.1110889108Google Scholar
  7. 7.
    La Scola B, Audic S, Robert C, Jungang L, de Lamballerie X, Drancourt M, Birtles R, Claverie JM, Raoult D (2003) A giant virus in amoebae. Science 299 (5615):2033–2033Google Scholar
  8. 8.
    Tang JW (2009) The effect of environmental parameters on the survival of airborne infectious agents. Journal of the Royal Society Interface 6:S737–S746Google Scholar
  9. 9.
    Taylor PE, Flagan RC, Valenta R, Glovsky MM (2002) Release of allergens as respirable aerosols: A link between grass pollen and asthma. Journal of Allergy and Clinical Immunology 109 (1):51–56. doi:10.1067/mai.2002.120759Google Scholar
  10. 10.
    Kuparinen A, Katul G, Nathan R, Schurr FM (2009) Increases in air temperature can promote wind-driven dispersal and spread of plants. P Roy Soc B-Biol Sci 276 (1670):3081–3087. doi:10.1098/rspb.2009.0693Google Scholar
  11. 11.
    Elbert W, Taylor PE, Andreae MO, Poschl U (2007) Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions. Atmospheric Chemistry and Physics 7 (17):4569–4588Google Scholar
  12. 12.
    Reponen T, Hyvarinen A, Ruuskanen J, Raunemaa T, Nevalainen A (1994) Comparison of Concentrations and Size Distributions of Fungal Spores in Buildings with and without Mold Problems. Journal of Aerosol Science 25 (8):1595–1603. doi:10.1016/0021-8502(94)90227-5Google Scholar
  13. 13.
    Gorny RL, Reponen T, Willeke K, Schmechel D, Robine E, Boissier M, Grinshpun SA (2002) Fungal fragments as indoor air biocontaminants. Applied and Environmental Microbiology 68 (7):3522–3531. doi:10.1128/Aem.68.7.3522-3531.2002Google Scholar
  14. 14.
    Genitsaris S, Kormas KA, Moustaka-Gouni M (2011) Airborne algae and cyanobacteria: occurrence and related health effects. Front Biosci (Elite Ed) 3:772–787Google Scholar
  15. 15.
    Sharma NK, Rai AK, Singh S, Brown RM (2007) Airborne algae: Their present status and relevance. J Phycol 43 (4):615–627. doi:10.1111/j.1529-8817.2007.00373.xGoogle Scholar
  16. 16.
    Tegen I, Fung I (1994) Modeling of Mineral Dust in the Atmosphere—Sources, Transport, and Optical-Thickness. Journal of Geophysical Research-Atmospheres 99 (D11):22897–22914. doi:10.1029/94jd01928Google Scholar
  17. 17.
    Marshall WA (1996) Aerial dispersal of lichen soredia in the maritime Antarctic. New Phytol 134 (3):523–530. doi:10.1111/j.1469-8137.1996.tb04370.xGoogle Scholar
  18. 18.
    Despres VR, Huffman JA, Burrows SM, Hoose C, Safatov AS, Buryak G, Frohlich-Nowoisky J, Elbert W, Andreae MO, Poschl U, Jaenicke R (2012) Primary biological aerosol particles in the atmosphere: a review. Tellus Series B-Chemical and Physical Meteorology 64Google Scholar
  19. 19.
    Hamilton WD, Lenton TM (1998) Spora and Gaia: How microbes fly with their clouds. Ethology Ecology & Evolution 10 (1):1–16Google Scholar
  20. 20.
    Welsh DT, Viaroli P, Hamilton WD, Lenton TM (1999) Is DMSP synthesis in chlorophycean macro-algae linked to aerial dispersal? Ethology Ecology & Evolution 11 (3):265–278Google Scholar
  21. 21.
    Smith DJ, Griffin DW, Jaffe DA (2011) The High Life: Transport of Microbes in the Atmosphere. EOS, Transactions, American Geophysical Union 92 (30):249–256Google Scholar
  22. 22.
    Pöschl U (2005) Atmospheric aerosols: Composition, transformation, climate and health effects. Angew Chem Int Edit 44 (46):7520–7540. doi:10.1002/anie.200501122Google Scholar
  23. 23.
    Aller JY, Kuznetsova MR, Jahns CJ, Kemp PF (2005) The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. Journal of Aerosol Science 36 (5–6):801–812. doi:10.1016/j.jaerosci.2004.10.012Google Scholar
  24. 24.
    Blanchar Dc, Syzdek L (1970) Mechanism for Water-to-Air Transfer and Concentration of Bacteria. Science 170 (3958):626-&. doi:10.1126/science.170.3958.626Google Scholar
  25. 25.
    Andreas EL (1998) A new sea spray generation function for wind speeds up to 32m s(-1). J Phys Oceanogr 28 (11):2175–2184. doi:10.1175/1520-0485(1998)028<2175:Anssgf>2.0.Co;2Google Scholar
  26. 26.
    Lee JS, Weon BM, Park SJ, Je JH, Fezzaa K, Lee WK (2011) Size limits the formation of liquid jets during bubble bursting. Nat Commun 2. doi:Artn 367, doi:10.1038/Ncomms1369Google Scholar
  27. 27.
    Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K, Zhong GX, Hanson A, Katsura H, Watanabe S, Li CJ, Kawakami E, Yamada S, Kiso M, Suzuki Y, Maher EA, Neumann G, Kawaoka Y (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486 (7403):420-+. doi:10.1038/Nature10831Google Scholar
  28. 28.
    Burrows SM, Elbert W, Lawrence MG, Poschl U (2009) Bacteria in the global atmosphere—Part 1: Review and synthesis of literature data for different ecosystems. Atmospheric Chemistry and Physics 9 (23):9263–9280Google Scholar
  29. 29.
    Genitsaris S, Moustaka-Gouni M, Kormas KA (2011) Airborne microeukaryote colonists in experimental water containers: diversity, succession, life histories and established food webs. Aquatic Microbial Ecology 62 (2):139–U151Google Scholar
  30. 30.
    Chen PS, Tsai FT, Lin CK, Yang CY, Chan CC, Young CY, Lee CH (2010) Ambient Influenza and Avian Influenza Virus during Dust Storm Days and Background Days. Environmental Health Perspectives 118 (9):1211–1216. doi:10.1289/Ehp.0901782Google Scholar
  31. 31.
    Gloster J, Sellers RF, Donaldson AI (1982) Long-Distance Transport of Foot-and-Mouth-Disease Virus over the Sea. Vet Rec 110 (3):47–52Google Scholar
  32. 32.
    Imshenetsky AA, Lysenko SV, Kazakov GA (1978) Upper Boundary of Biosphere. Applied and Environmental Microbiology 35 (1):1–5Google Scholar
  33. 33.
    Haensch S, Bianucci R, Signoli M, Rajerison M, Schultz M, Kacki S, Vermunt M, Weston DA, Hurst D, Achtman M, Carniel E, Bramanti B (2010) Distinct Clones of Yersinia pestis Caused the Black Death. Plos Pathog 6 (10). doi:ARTN e1001134, doi:10.1371/journal.ppat.1001134Google Scholar
  34. 34.
    Potter CW (2001) A history of influenza. J Appl Microbiol 91 (4):572–579. doi:10.1046/j.1365-2672.2001.01492.xGoogle Scholar
  35. 35.
    WHO (2004) The World Health Report 2004—Changing history. World Health Organization, GenevaGoogle Scholar
  36. 36.
    Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJL (2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367 (9524):1747–1757Google Scholar
  37. 37.
    Douwes J, Eduard S, Thorne PS (2008) Bioaerosols. In: Heggenhougen HJ, Quah SR (eds) The encyclopaedia of public health, vol 1. Academic Press, San Diego, pp 287–297Google Scholar
  38. 38.
    Douwes J, Thorne P, Pearce N, Heederik D (2003) Bioaerosol health effects and exposure assessment: Progress and prospects. Annals of Occupational Hygiene 47 (3):187–200. doi:10.1093/annhyg/meg032Google Scholar
  39. 39.
    Klevens RM, Edwards JR, Richards CL, Horan TC, Gaynes RP, Pollock DA, Cardo DM (2007) Estimating health care-associated infections and deaths in US hospitals, 2002. Public Health Rep 122 (2):160–166Google Scholar
  40. 40.
    Liu AH, Leung DYM (2006) Renaissance of the hygiene hypothesis. Journal of Allergy and Clinical Immunology 117 (5):1063–1066. doi:10.1016/j.jaci.2006.03.027Google Scholar
  41. 41.
    Strachan DP (1989) Hay fever, hygiene, and household size. Bmj 299 (6710):1259–1260Google Scholar
  42. 42.
    Jaenicke R (2005) Abundance of cellular material and proteins in the atmosphere. Science 308 (5718):73–73Google Scholar
  43. 43.
    Deguillaume L, Leriche M, Amato P, Ariya PA, Delort AM, Poschl U, Chaumerliac N, Bauer H, Flossmann AI, Morris CE (2008) Microbiology and atmospheric processes: chemical interactions of primary biological aerosols. Biogeosciences 5 (4):1073–1084Google Scholar
  44. 44.
    IPCC (2007) Climate Change 2007—The Pysical Science Basis. Cambridge University Press, New YorkGoogle Scholar
  45. 45.
    Hoose C, Möhler O (2012) Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmospheric Chemistry and Physics 12 (20):9817–9854. doi:10.5194/acp-12-9817-2012Google Scholar
  46. 46.
    Temkiv TS, Finster K, Hansen BM, Nielsen NW, Karlson UG (2012) The microbial diversity of a storm cloud as assessed by hailstones. Fems Microbiol Ecol 81 (3):684–695. doi:10.1111/j.1574-6941.2012.01402.xGoogle Scholar
  47. 47.
    Isard SA, Gage SH, Comtois P, Russo JM (2005) Principles of the atmospheric pathway for invasive species applied to soybean rust. Bioscience 55 (10):851–861. doi:10.1641/0006-3568 (2005) 055[0851:Potapf]2.0.Co;2Google Scholar

Copyright information

© Springer-Verlag New York 2014

Authors and Affiliations

  1. 1.Division of Ergonomics and Aerosol Technology, Department of Design SciencesLund UniversityLundSweden

Personalised recommendations