Advertisement

History of the Early Biodetection Development

Chapter
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

A serious attempt at detecting biological aerosol occurred in the late 1940s. The scientists used optical methods to detect light scatter from single 0.6 µm spore particles moving in an airstream. Considering that analogue tube electronics were the tools of the day, the achievement was remarkable. However, the technology was insufficiently sensitive to permit particle sizing at submicron range. Coincidentally, the use of Bacillus globigii (over the years the species Bacillus globigii has taxonomically changed name from Bacillus subtilis var niger and to the current Bacillus atrophaeus. However, the acronym BG is still widely used)BG aerosol as a bacterial spore simulant for anthrax was first mentioned during these studies. Decades later, other workers thought that chemiluminescence would solve the problem of detecting biological particles captured from aerosol. The technique worked perfectly under laboratory conditions but failed in real life field situations where background material caused too many false alarms. A crucial lesson learnt from this was that all detectors work perfectly in the laboratory but may fail in the field. The next evolutional step was the use of time-of-flight particle sizing technology where it was assumed that artificially generated biological agents would appear mostly in the size range greater than 2.5 µm, providing a distinguishable characteristic from background material. Still, this approach was susceptible to the occasional strong wind gusts that raise big particles from the ground with the potential to degrade false alarm reliability. A more discriminatory approach was clearly required. By good fortune, it was observed that live spores could be induced to fluoresce if excited by long wavelength UV light. A prototype instrument called the fluorescence aerodynamic particle sizer (FLAPS) was built and found to be effective in detecting the “live” simulant for anthrax in field trials. The instrument provided particle size and fluorescent brightness information which when combined with gating methods, permitted software to be developed with the potential to meet low false alarming criteria. The instrument was discovered to be sensitive enough to detect naturally occurring live bacterial particles. It has been mentioned that being “live” is a prerequisite for a particle to be infectious. Thus the potential for this instrument to detect naturally occurring infectious aerosol particles will need further verification. We also caution the tendency for non-microbiologists to misuse the term “identification” of biological agents when they actually mean segregation or sort.

Keywords

False Alarm Light Scatter Dioctyl Phthalate Aerodynamic Particle Sizer Biological Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Many colleagues have helped in making it possible to achieve the work described in this review. Peter Hairston of TSI Inc. was instrumental in the providing engineering expertise required to design and build the fluorescence optical detector. A few who have been involved with the US Army, for example, Jeff Mohr, Douglas Andersen and Robert McGhin made it possible for testing detection system in Dugway, Utah and Florida. Finally, the commercial success of the instrument is due in no small part to the engineering and marketing skills of TSI Inc., St. Paul, MN and Dycor Technologies, Edmonton AB.

References

  1. 1.
    Koch R (1893) Ueber den augenblicklichen Stand der bakteriologischen Choleradiagnose. Z Hyg Infekt 14 (1):319–338. doi:10.1007/BF02284324Google Scholar
  2. 2.
    May ML, Robson J (2007) Microbiological diagnostic procedures in respiratory infections: suppurative lung disease. Paediatr Respir Rev 8 (3):185–194. doi:10.1016/j.prrv.2007.08.009Google Scholar
  3. 3.
    Evans AS (1976) Causation and disease: the Henle-Koch postulates revisited. Yale J Biol Med 49 (2):175–195Google Scholar
  4. 4.
    van Schaik E, Tom M, DeVinney R, Woods DE (2008) Development of novel animal infection models for the study of acute and chronic Burkholderia pseudomallei pulmonary infections. Microbes Infect 10 (12–13):1291–1299. doi:10.1016/j.micinf.2008.07.028Google Scholar
  5. 5.
    Wyatt PJ (1968) Differential Light Scattering: a Physical Method for Identifying Living Bacterial Cells. Appl Opt 7 (10):1879–1896. doi:10.1364/AO.7.001879Google Scholar
  6. 6.
    Ammor MS (2007) Recent advances in the use of intrinsic fluorescence for bacterial identification and characterization. J Fluoresc 17 (5):455–459. doi:10.1007/s10895-007-0180-6Google Scholar
  7. 7.
    Courvoisier F, Bonacina L, Boutou V, Guyon L, Bonnet C, Thuillier B, Extermann J, Roth M, Rabitz H, Wolf J-P (2008) Identification of biological microparticles using ultrafast depletion spectroscopy. Faraday Discuss 137:37–49. doi:10.1039/B615221JGoogle Scholar
  8. 8.
    Tourkya B, Boubellouta T, Dufour E, Leriche F (2009) Fluorescence Spectroscopy as a Promising Tool for a Polyphasic Approach to Pseudomonad Taxonomy. Curr Microbiol 58 (1):39–46. doi:10.1007/s00284-008-9263-0Google Scholar
  9. 9.
    Janda JM, Abbott SL (2002) Bacterial Identification for Publication: When Is Enough Enough?. J Clin Microbiol 40 (6):1887–1891. doi:10.1128/JCM.40.6.1887-1891.2002Google Scholar
  10. 10.
    Ho J (2002) Future of biological aerosol detection. Anal Chim Acta 457 (1):125–148. doi:10.1016/S0003-2670(01)01592-6Google Scholar
  11. 11.
    van Pelt C, Verduin CM, Goessens WHF, Vos MC, Tümmler B, Segonds C, Reubsaet F, Verbrugh H, van Belkum A (1999) Identification of Burkholderia spp. in the Clinical Microbiology Laboratory: Comparison of Conventional and Molecular Methods. J Clin Microbiol 37 (7):2158–2164Google Scholar
  12. 12.
    Cullimore DR, McCann AE (1977) The identification, cultivation and control of iron bacteria in ground water. In: Skinner FA, J.M. S (eds) Aquatic Microbiology. Academic Press, ­London, pp 219–261Google Scholar
  13. 13.
    Danin-Poleg Y, Somer L, Cohen LA, Diamant E, Palti Y, Kashi Y (2006) Towards the definition of pathogenic microbe. Int J Food Microbiol 112 (3):236–243. doi:10.1016/j.ijfoodmicro.2006.04.010Google Scholar
  14. 14.
    Maughan H, Birky CW, Nicholson WL (2009) Transcriptome Divergence and the Loss of Plasticity in Bacillus subtilis after 6,000 Generations of Evolution under Relaxed Selection for Sporulation. J Bacteriol 191 (1):428–433. doi:10.1128/jb.01234-08Google Scholar
  15. 15.
    Jones SD, Teigen PM (2008) Anthrax in transit: practical experience and intellectual exchange. Isis 99 (3):455–485Google Scholar
  16. 16.
    Bell JH (1881) On Woolsorters’ Disease. Br Med J 1 (1067):915–916Google Scholar
  17. 17.
    Whytlaw-Gray R, Speakman J, Campbell J (1923) Smokes: Part I. A Study of their Behaviour and a Method of Determining the Number of Particles they Contain. Proc R Soc Lond A 102 (718):600–615. doi:10.1098/rspa.1923.0018Google Scholar
  18. 18.
    Taylor H (1961) Frederick George Donnan. J Am Chem Soc 83 (14):2979–2981. doi:10.1021/ja01475a001Google Scholar
  19. 19.
    Gentry JW (1997) The legacy of John Tyndall in aerosol science. J Aerosol Sci 28 (8):1365–1372. doi:10.1016/S0021-8502(97)00008-6Google Scholar
  20. 20.
    Tolman RC, Vliet EB (1919) A Tyndallmeter for the examination of disperse systems. J Am Chem Soc 41 (3):297–300. doi:10.1021/ja01460a001Google Scholar
  21. 21.
    Tolman RC, Gerke RH, Brooks AP, Herman AG, Mulliken RS, Smyth HD (1919) Relation between intensity of Tyndall beam and size of particles. J Am Chem Soc 41 (4):575–587. doi:10.1021/ja01461a008Google Scholar
  22. 22.
    Gucker FT, O’Konski CT, Pickard HB, Pitts JN (1947) A Photoelectronic Counter for Colloidal Particles. J Am Chem Soc 69 (10):2422–2431. doi:10.1021/ja01202a053Google Scholar
  23. 23.
    Guyton A (1946) Electronic counting and size determination of particles in aerosols. J Ind Hyg Toxicol 28 (4):133–141Google Scholar
  24. 24.
    Kenefic LJ, Pearson T, Okinaka RT, Schupp JM, Wagner DM, Ravel J, Hoffmaster AR, Trim CP, Chung W-K, Beaudry JA, Foster JT, Mead JI, Keim P (2009) Pre-Columbian Origins for North American Anthrax. PLoS ONE 4 (3):e4813.1–21. doi:10.1371/journal.pone.0004813Google Scholar
  25. 25.
    Wallin A, Luksiene Z, Zagminas K, Surkiene G (2007) Public health and bioterrorism: renewed threat of anthrax and smallpox. Medicina (Kaunas) 43 (4):278–84Google Scholar
  26. 26.
    Ferry RM, Farr LE, Hartman MG (1949) The Preparation and Measurement of the Concentration of Dilute Bacterial Aerosols. Chem Rev 44 (2):389–417. doi:10.1021/cr60138a010Google Scholar
  27. 27.
    Larson EW, Young HW, Walker JS (1976) Aerosol evaluations of the De Vilbiss No. 40 and Vaponefrin nebulizers. Appl Environ Microbiol 31 (1):150–151Google Scholar
  28. 28.
    Shapiro HM (2003) Practical flow cytometry. 4th edn. John Wiley & Sons, Hoboken, New JerseyGoogle Scholar
  29. 29.
    Smyth M (1952) Notes on the 931-A photomultiplier. Mon Not R Astron Soc 112:88–93Google Scholar
  30. 30.
    Edels H, Gambling WA (1954) Spatial variations of the spectral response of photomultiplier cathodes. J Sci Instrum 31 (4):121. doi:10.1088/0950-7671/31/4/303Google Scholar
  31. 31.
    Gucker Jr FT, O’Konski CT (1949) An improved photoelectronic counter for colloidal particles, suitable for size-distribution studies. J Colloid Sci 4 (6):541–560. doi:10.1016/0095-8522(49)90052-5Google Scholar
  32. 32.
    O’Konski CT, Doyle GJ (1955) Light-Scattering Studies in Aerosols with New Counter-Photometer. Anal Chem 27 (5):694–701. doi:10.1021/ac60101a002Google Scholar
  33. 33.
    Gucker Jr FT, Cohn SH (1953) Numerical evaluation of the Mie scattering functions; table of the angular functions πn and τn of orders 1 to 32, at 2.5° intervals. J Colloid Sci 8 (6):555–574. doi:10.1016/0095-8522(53)90045-2Google Scholar
  34. 34.
    Gucker FT, Egan JJ (1961) Measurement of the angular variation of light scattered from single aerosol droplets. J Colloid Sci 16 (1):68–84. doi:10.1016/0095-8522(61)90064-2Google Scholar
  35. 35.
    Gucker FT, Tůma J (1968) Influence of the collecting lens aperture on the light-scattering diagrams from single aerosol particles. J Colloid Interface Sci 27 (3):402–411. doi:10.1016/0021-9797(68)90177-XGoogle Scholar
  36. 36.
    Ferry RM, Maple TG (1954) Studies of the Loss of Viability of Stored Bacterial Aerosols I. Micrococcus Candidus. J Infect Dis 95 (2):142–159. doi:10.1093/infdis/95.2.142Google Scholar
  37. 37.
    Mie G (1908) Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Ann Phys 25 (3):377–445Google Scholar
  38. 38.
    Logan N (1965) Survey of some early studies of the scattering of plane waves by a sphere. Proc IEEE 53 (8):773–785. doi:10.1109/PROC.1965.4055Google Scholar
  39. 39.
    Twersky V (1964) Rayleigh Scattering. Appl Opt 3 (10):1150–1150. doi:10.1364/AO.3.001150Google Scholar
  40. 40.
    Wyatt PJ (1969) Identification of Bacteria by Differential Light Scattering. Nature 221 (5187):1257–1258. doi:10.1038/2211257a0Google Scholar
  41. 41.
    Van De Merwe WP, Huffman DR, Bronk BV (1989) Reproducibility and sensitivity of polarized light scattering for identifying bacterial suspensions. Appl Opt 28 (23):5052–5057. doi:10.1364/AO.28.005052Google Scholar
  42. 42.
    Wyatt PJ, Schehrer KL, Phillips SD, Jackson C, Chang Y-J, Parker RG, Phillips DT, Bottiger JR (1988) Aerosol particle analyzer. Appl Opt 27 (2):217–221. doi:10.1364/AO.27.000217Google Scholar
  43. 43.
    Dick WD, McMurry PH, Bottiger JR (1994) Size- and Composition-Dependent Response of the DAWN-A Multiangle Single-Particle Optical Detector. Aerosol Sci Technol 20 (4):345–362. doi:10.1080/02786829408959690Google Scholar
  44. 44.
    Young KD (2006) The Selective Value of Bacterial Shape. Microbiol Mol Biol Rev 70 (3):660–703. doi:10.1128/mmbr.00001-06Google Scholar
  45. 45.
    Vollmer W, Bertsche U (2008) Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Biochim Biophys Acta 1778 (9):1714–1734. doi:10.1016/j.bbamem.2007.06.007Google Scholar
  46. 46.
    Margolin W (2005) FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol 6 (11):862–871. doi:10.1038/nrm1745Google Scholar
  47. 47.
    Jones LJF, Carballido-López R, Errington J (2001) Control of Cell Shape in Bacteria: Helical, Actin-like Filaments in Bacillus subtilis. Cell 104 (6):913–922. doi:10.1016/S0092-8674(01)00287-2Google Scholar
  48. 48.
    Cox CS, Wathes CM (eds) (1995) Bioaerosols handbook. Lewis, LondonGoogle Scholar
  49. 49.
    Bexon R, Gibbs J, Bishop GD (1976) Automatic assessment of aerosol holograms. J Aerosol Sci 7 (5):397–407. doi:10.1016/0021-8502(76)90026-4Google Scholar
  50. 50.
    Kaye PH, Eyles NA, Ludlow IK, Clark JM (1991) An instrument for the classification of airborne particles on the basis of size, shape, and count frequency. Atmos Environ A 25 (3–4):645–654. doi:10.1016/0960-1686(91)90062-CGoogle Scholar
  51. 51.
    Kaye PH, Hirst E, Clark JM, Micheli F (1992) Airborne particle shape and size ­classification from spatial light scattering profiles. J Aerosol Sci 23 (6):597–611. doi:10.1016/0021-8502(92)90027-SGoogle Scholar
  52. 52.
    Hirst E, Kaye PH, Guppy JR (1994) Light scattering from nonspherical airborne particles: experimental and theoretical comparisons. Appl Opt 33 (30):7180–7186. doi:10.1364/AO.33.007180Google Scholar
  53. 53.
    Hirst E, Kaye PH (1996) Experimental and theoretical light scattering profiles from spherical and nonspherical particles. J Geophys Res 101 (D14):19231–19235. doi:10.1029/95JD02343Google Scholar
  54. 54.
    Kaye PH, Alexander-Buckley K, Hirst E, Saunders S, Clark JM (1996) A real-time monitoring system for airborne particle shape and size analysis. J Geophys Res 101 (D14):19215–19221. doi:10.1029/96JD00228Google Scholar
  55. 55.
    Kaye PH, Barton JE, Hirst E, Clark JM (2000) Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles. Appl Opt 39 (21):3738–3745. doi:10.1364/AO.39.003738Google Scholar
  56. 56.
    Kaye PH, Stanley WR, Hirst E, Foot EV, Baxter KL, Barrington SJ (2005) Single particle multichannel bio-aerosol fluorescence sensor. Opt Express 13 (10):3583–3593. doi:10.1364/OPEX.13.003583Google Scholar
  57. 57.
    Kaye PH, Hirst E, Greenaway RS, Ulanowski Z, Hesse E, DeMott PJ, Saunders C, Connolly P (2008) Classifying atmospheric ice crystals by spatial light scattering. Opt Lett 33 (13):1545–1547. doi:10.1364/OL.33.001545Google Scholar
  58. 58.
    Auger J-C, Aptowicz KB, Pinnick RG, Pan Y-L, Chang RK (2007) Angularly resolved light scattering from aerosolized spores: observations and calculations. Opt Lett 32 (22):3358–3360. doi:10.1364/OL.32.003358Google Scholar
  59. 59.
    Gogoi A, Buragohain AK, Choudhury A, Ahmed GA (2009) Laboratory measurements of light scattering by tropical fresh water diatoms. J Quant Spectrosc Radiat Transfer 110 (14–16):1566–1578. doi:10.1016/j.jqsrt.2009.03.008Google Scholar
  60. 60.
    Latimer P, Brunsting A, Pyle BE, Moore C (1978) Effects of asphericity on single particle scattering. Appl Opt 17 (19):3152–3158. doi:10.1364/AO.17.003152Google Scholar
  61. 61.
    Metcalf WS, Quickenden TI (1965) Di-imide and the Chemiluminescence of Luminol. Nature 206 (4983):506–507. doi:10.1038/206506b0Google Scholar
  62. 62.
    Albrecht HO (1928) Uber die Chemiluminescenz des Aminophthalsaurehydrazids. Z Phys Chem 136:321–330Google Scholar
  63. 63.
    Drew HDK, Garwood RF (1938) Chemiluminescent organic compounds. Part VI. The isolation of peroxide derivatives of phthalaz-1: 4-diones. J Chem Soc:791–793. doi:10.1039/JR9380000791Google Scholar
  64. 64.
    Neufeld HA, Conklin CJ, Towner RD (1965) Chemiluminescence of luminol in the presence of hematin compounds. Anal Biochem 12 (2):303–309. doi:10.1016/0003-2697(65)90095-3Google Scholar
  65. 65.
    Sotnikov GG (1970) Detection of iron-porphyrin proteins with a biochemiluminescent method in search of extraterrestrial life. Life Sci Space Res 8:90–8Google Scholar
  66. 66.
    Miller CA, Vogelhut PO (1978) Chemiluminescent detection of bacteria: experimental and theoretical limits. Appl Environ Microbiol 35 (4):813–816Google Scholar
  67. 67.
    Ewetz L, Thore A (1976) Factors affecting the specificity of the luminol reaction with hematin compounds. Anal Biochem 71 (2):564–570. doi:10.1016/S0003–2697(76)80025-5Google Scholar
  68. 68.
    Marple VA (2004) History of Impactors—The First 110 Years. Aerosol Sci Technol 38 (3):247–292. doi:10.1080/02786820490424347Google Scholar
  69. 69.
    Brenner KP, Scarpino PV, Clark CS (1988) Animal viruses, coliphages, and bacteria in aerosols and wastewater at a spray irrigation site. Appl Environ Microbiol 54 (2):409–415Google Scholar
  70. 70.
    Kesavan J, Doherty RW (2001) Characterization of the SCP 1021 Aerosol Sampler. ECBC-TR-211. Edgewood Chemical Biological Center Aberdeen Proving Ground MD. Available from: http://handle.dtic.mil/100.2/ADA397460
  71. 71.
    Bergman W, R LJS, Sawyer S, Milanovich F, Mariella Jr R (2005) High air flow, low pressure drop, bio-aerosol collector using a multi-slit virtual impactor. J Aerosol Sci 36 (5–6):619–638. doi:10.1016/j.jaerosci.2004.12.010Google Scholar
  72. 72.
    Barrett WJ, Miller HC (1975) Investigation of Luminol and Collection Tape Components and the Effects of Airborne Interferents on the XM19 Detector. AD-AO07 274. Southern Research Institute, Birmingham, Alabama. Available from: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA007274
  73. 73.
    Putscher RE, McCrone WC (1975) Characterization of air particles giving false responses with biological detectors. AD-A015 519. Walter C Mccrone Associates Inc., Chicago Il. Available from: http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA015519
  74. 74.
    Vong L, Laës A, Blain S (2007) Determination of iron–porphyrin-like complexes at nanomolar levels in seawater. Anal Chim Acta 588 (2):237–244. doi:10.1016/j.aca.2007.02.007Google Scholar
  75. 75.
    Laglera LM, van den Berg CM (2009) Evidence for geochemical control of iron by humic substances in seawater. Limnol Oceanogr 54 (2):610–619Google Scholar
  76. 76.
    Hinte J (2004) A Short History of Detectors. CB Quartely. Edgewood Chemical Biological Center, Aberdeen Proving Ground, MDGoogle Scholar
  77. 77.
    Creamer JI, Quickenden TI, Apanah MV, Kerr KA, Robertson P (2003) A comprehensive experimental study of industrial, domestic and environmental interferences with the forensic luminol test for blood. Lumin 18 (4):193–198. doi:10.1002/bio.723Google Scholar
  78. 78.
    Agarwal JK, Remiarz RJ, Quant FR, Sem GJ (1982) Real time aerodynamic particle size analyzer. J Aerosol Sci 13:222–223Google Scholar
  79. 79.
    Baron PA (1986) Calibration and Use of the Aerodynamic Particle Sizer (APS 3300). Aerosol Sci Technol 5 (1):55–67. doi:10.1080/02786828608959076Google Scholar
  80. 80.
    Volckens J, Peters TM (2005) Counting and particle transmission efficiency of the aerodynamic particle sizer. J Aerosol Sci 36 (12):1400–1408. doi:10.1016/j.jaerosci.2005.03.009Google Scholar
  81. 81.
    Ananth G, Wilson JC (1988) Theoretical Analysis of the Performance of the TSI Aerodynamic Particle Sizer—The Effect of Density on Response. Aerosol Sci Technol 9 (3):189–199. doi:10.1080/02786828808959207Google Scholar
  82. 82.
    Carrera M, Zandomeni RO, Sagripanti JL (2008) Wet and dry density of Bacillus anthracis and other Bacillus species. J Appl Microbiol 105 (1):68–77. doi:10.1111/j.1365–2672.2008.03758.xGoogle Scholar
  83. 83.
    Ho J, Spence M, Fisher GR (1995) Detection of BW Agents: Dugway Trinational BW Field Trial 20–30 October 1993, Dugway, Utah, Mobile Aerosol Sampling Unit Data Analysis. DRES-619. Defence Research Establishment Suffield, Ralston, Alberta, Canada. Available from: http://cradpdf.drdc.gc.ca/PDFS/zba7/p150526.pdf
  84. 84.
    Held A, Zerrath A, McKeon U, Fehrenbach T, Niessner R, Plass-Dülmer C, Kaminski U, Berresheim H, Pöschl U (2008) Aerosol size distributions measured in urban, rural and high-alpine air with an electrical low pressure impactor (ELPI). Atmos Environ 42 (36):8502–8512. doi:10.1016/j.atmosenv.2008.06.015Google Scholar
  85. 85.
    Ho J (1991) Characteristics of simulant aerosols for study of the BCD inlet nozzle. DRES-543. Defence Research Establishment Suffield, Ralston, Alberta, Canada. Available from: http://cradpdf.drdc.gc.ca/PDFS/zbc81/p70649.pdf
  86. 86.
    Evans BTN, Yee E, Roy G, Ho J (1994) Remote detection and mapping of bioaerosols. J Aerosol Sci 25 (8):1549–1566. doi:10.1016/0021-8502(94)90224-0Google Scholar
  87. 87.
    Yee E, Ho J (1990) Neural network recognition and classification of aerosol particle distributions measured with a two-spot laser velocimeter. Appl Opt 29 (19):2929–2938. doi:10.1364/AO.29.002929Google Scholar
  88. 88.
    Landrin A, Bissery A, Kac G (2005) Monitoring air sampling in operating theatres: can particle counting replace microbiological sampling? J Hosp Infect 61 (1):27–29Google Scholar
  89. 89.
    Shapiro HM (2004) The evolution of cytometers. Cytometry Part A 58A (1):13–20. doi:10.1002/cyto.a.10111Google Scholar
  90. 90.
    Steen H, Lindmo T (1979) Flow cytometry: a high-resolution instrument for everyone. Science 204 (4391):403–404. doi:10.1126/science.441727Google Scholar
  91. 91.
    Steen HB, Boye E, Skarstad K, Bloom B, Godal T, Mustafa S (1982) Applications of flow cytometry on bacteria: Cell cycle kinetics, drug effects, and quantitation of antibody binding. Cytometry 2 (4):249–257. doi:10.1002/cyto.990020409Google Scholar
  92. 92.
    Shapiro HM (2000) Microbial analysis at the single-cell level: tasks and techniques. J Microbiol Methods 42 (1):3–16. doi:10.1016/S0167-7012(00)00167-6Google Scholar
  93. 93.
    Brehm-Stecher BF, Johnson EA (2004) Single-Cell Microbiology: Tools, Technologies, and Applications. Microbiol Mol Biol Rev 68 (3):538–559. doi:10.1128/mmbr.68.3.538-559.2004Google Scholar
  94. 94.
    Duysens LNM, Amesz J (1957) Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near-ultraviolet and visible region. Biochim Biophys Acta 24:19–26. doi:10.1016/0006-3002(57)90141-5Google Scholar
  95. 95.
    Theorell H, Chance B (1951) Studies on liver alcohol dehydrogenase. II. The kinetics of the compound of horse liver alcohol dehydrogenase and reduced diphosphopyridine nucleotide. Acta Chem Scand 5:1127–1144. doi:10.3891/acta.chem.scand.05-1127Google Scholar
  96. 96.
    Mayevsky A, Rogatsky GG (2007) Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies. Am J Physiol Cell Physiol 292 (2):C615–C640. doi:10.1152/ajpcell.00249.2006Google Scholar
  97. 97.
    Ho J, Fisher G (1993) Detection of BW agents: flow cytometry measurement of Bacillus subtillis (BG) spore fluorescence. DRES-M-1421. Defence Research Establishment Suffield, Ralston, Alberta, Canada. Available from: http://cradpdf.drdc.gc.ca/PDFS/zbc83/p135828.pdf
  98. 98.
    Setlow B, Setlow P (1977) Levels of oxidized and reduced pyridine nucleotides in dormant spores and during growth, sporulation, and spore germination of Bacillus megaterium. J Bacteriol 129 (2):857–865Google Scholar
  99. 99.
    Sano K, Otani M, Uehara R, Kimura M, Umezawa C (1988) Primary role of NADH formed by glucose dehydrogenase in ATP provision at the early stage of spore germination in ­Bacillus megaterium QM B1551. Microbiol Immunol 32 (9):877–885Google Scholar
  100. 100.
    Laflamme C, Verreault D, Lavigne S, Trudel L, Ho J, Duchaine C (2005) Autofluorescence as a viability marker for detection of bacterial spores. Front Biosci 10 (2):1647–1653Google Scholar
  101. 101.
    Laflamme C, Ho J, Veillette M, Latrémoille M-C, Verreault D, Mériaux A, Duchaine C (2005) Flow cytometry analysis of germinating Bacillus spores, using membrane potential dye. Arch Microbiol 183 (2):107–112. doi:10.1007/s00203-004-0750-9Google Scholar
  102. 102.
    Magge A, Setlow B, Cowan AE, Setlow P (2009) Analysis of dye binding by and membrane potential in spores of Bacillus species. J Appl Microbiol 106 (3):814–824. doi:10.1111/j.1365-2672.2008.04048.xGoogle Scholar
  103. 103.
    Hairston PP, Ho J, Quant FR (1997) Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence. J Aerosol Sci 28 (3):471–482. doi:10.1016/S0021-8502(96)00448-XGoogle Scholar
  104. 104.
    Ho J (1996) Real time detection of biological aerosols with fluorescence aerodynamic particle sizer (FLAPS). J Aerosol Sci 27 (1001):581–582. doi:10.1016/0021-8502(96)00363-1Google Scholar
  105. 105.
    Ho J, Spence M, Hairston P (1999) Measurement of biological aerosol with a fluorescent aerodynamic particle sizer (FLAPS): correlation of optical data with biological data. Aerobiol 15 (4):281–291. doi:10.1023/A:1007647522397Google Scholar
  106. 106.
    Jones AM, Harrison RM (2004) The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Sci Total Environ 326 (1–3):151–180. doi:10.1016/j.scitotenv.2003.11.021Google Scholar
  107. 107.
    Traidl-Hoffmann C, Jakob T, Behrendt H (2009) Determinants of allergenicity. J Allergy and Clin Immunol 123 (3):558–566. doi:10.1016/j.jaci.2008.12.003Google Scholar
  108. 108.
    Teale F, Weber G (1957) Ultraviolet fluorescence of the aromatic amino acids. Biochem J 65 (3):476–482Google Scholar
  109. 109.
    Ley H, von Engelhardt K (1910) Ultraviolet flourescence and chemical constitution in cyclic compounds. Z Phys Chem 74 (1):1–64Google Scholar
  110. 110.
    Faris GW, Copeland RA, Mortelmans K, Bronk BV (1997) Spectrally resolved absolute fluorescence cross sections for bacillus spores. Appl Opt 36 (4):958–967. doi:10.1364/AO.36.000958Google Scholar
  111. 111.
    Kalinin I, Vorob’ev SA, Khramov EN, Vorob’eva EA, Kuznetsov AP, Kiselev OS (2000) (Use of laser flow-type fluorescence aerosol particle counter to evaluate the concentration of microbes in the surface air under high dust content). Vestn Ross Akad Med Nauk (10):16–19Google Scholar
  112. 112.
    Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews 59 (1):143–169Google Scholar
  113. 113.
    Cheng YS, Barr EB, Fan BJ, Hargis J, P. J., Rader DJ, O’Hern TJ, Torczynski JR, ­Tisone GC, Preppernau BL, Young SA, Radloff RJ (1999) Detection of Bioaerosols Using Multiwavelength UV Fluorescence Spectroscopy. Aerosol Sci Technol 30 (2):186–201. doi:10.1080/027868299304778Google Scholar
  114. 114.
    Sivaprakasam V, Huston AL, Scotto C, Eversole JD (2004) Multiple UV wavelength excitation and fluorescence of bioaerosols. Opt Express 12 (19):4457–4466. doi:10.1364/OPEX.12.004457Google Scholar
  115. 115.
    Pan Y-L, Pinnick RG, Hill SC, Rosen JM, Chang RK (2007) Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico. J Geophys Res 112 (D24):D24S19.1–15. doi:10.1029/2007jd008741Google Scholar
  116. 116.
    Huang HC, Pan Y-L, Hill SC, Pinnick RG, Chang RK (2008) Real-time measurement of dual-wavelength laser-induced fluorescence spectra of individual aerosol particles. Opt Express 16 (21):16523–16528. doi:10.1364/OE.16.016523Google Scholar
  117. 117.
    Pan Y-L, Hill SC, Pinnick RG, Huang H, Bottiger JR, Chang RK (2010) Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results. Opt Express 18 (12):12436–12457. doi:10.1364/OE.18.012436Google Scholar
  118. 118.
    Jeys TH, Herzog WD, Hybl JD, Czerwinski RN, Sanchez A (2007) Advanced Trigger Development. Linc Lab J 17 (1):29–62Google Scholar
  119. 119.
    Schulze P, Belder D (2009) Label-free fluorescence detection in capillary and microchip electrophoresis. Anal Bioanal Chem 393 (2):515–525. doi:10.1007/s00216-008-2452-7Google Scholar
  120. 120.
    Buteau S, Simard J-R, Lahaie P, Roy G, Mathieu P, Déry B, Ho J, McFee J (2008) Bioaerosol Standoff Monitoring Using Intensified Range-Gated Laser-Induced Fluorescence Spectroscopy. In: Kim YJ, Platt U (eds) Advanced Environmental Monitoring. Springer Netherlands, Dordrecht, pp 203–216. doi:10.1007/978-1-4020-6364-0_16Google Scholar
  121. 121.
    Han YW (1990) Microbial levan. Adv Appl Microbiol 35:171–194Google Scholar

Copyright information

© Springer-Verlag New York 2014

Authors and Affiliations

  1. 1.Defence R&D Canada–SuffieldMedicine HatCanada

Personalised recommendations